Brief Introduction to Tensor Algebra

CONTENT

I. Basic concepts

1. different coordinate systems

2. tensor algorithm

II. Differentiation of tensors

1. The differentiation of base vectors

2. Covariant derivatives of vector fields

3. Grad, div and curl

III. Tensor expression of basic terms in fluid mechanics

1. convective terms

2. pressure gradient term

3. diffusion terms

I. Basic concepts

1. different coordinate systems

 a. rectangular cartesian coordinates

 b. generalized cartesian coordinates

 c. orthogonal curvilinear coordinates

 d. generalized curvilinear coordinates

2. tensor algorithm

 a. contravariant and covariant components

For basis g_1, g_2, g_3:
non-coplanar condition: \((g_1 \times g_2) \cdot g_3 \neq 0\)

\[
\mathbf{u} = u^1 g_1 + u^2 g_2 + u^3 g_3 = u^i g_i \tag{1}
\]

For reciprocal basis \(g^1, g^2, g^3\):

\[
g^i \cdot g_j = \delta^i_j \tag{2}
\]

\[
\mathbf{u} = u_1 g^1 + u_2 g^2 + u_3 g^3 = u^i g_i \tag{3}
\]

\[
\mathbf{u} \cdot g^j = u^i g_i \cdot g^j = u^i \delta^j_i = u^j \tag{4}
\]

\[
\mathbf{u} \cdot g_j = u^i g^i \cdot g_j = u_i \delta^i_j = u_j \tag{5}
\]

\(u^i\): contravariant components

\(u_i\): covariant components

\(g^i\): contravariant base vectors

\(g_i\): covariant base vectors

b. Relationship between contravariant and covariant components

\[
u^i = \mathbf{u} \cdot g^i = (u_k g^k) \cdot g^i = u_k (g^k \cdot g^i) \tag{6}
\]

\[
u_i = \mathbf{u} \cdot g_i = (u_k g^k) \cdot g_i = u^k (g_k \cdot g_i) \tag{7}
\]

Introducing metric tensor:

\[
g_{ik} = g_i \cdot g_k, \tag{8}
\]

\[
g^{ik} = g^i \cdot g^k \tag{9}
\]

The relationship between contravariant and covariant components:

\[
u^i = g^{ik} u_k \tag{10}
\]

\[
u_i = g_{ik} u^k \tag{11}
\]
The relationship between contravariant and covariant base vectors:

\[g_i = g_{ij} g^j \]
\[g^i = g^{ij} g_j \]
\[g_{ik} = g_i g_k = \frac{\partial y_j}{\partial x^i} \frac{\partial y_j}{\partial x^k} \]
\[g_{ij} = (g_{rs} g_{mn} - g_{rn} g_{ms}) / g \]
\[i = 1 : r = 2, m = 3; \quad j = 1 : s = 2, n = 3 \]
\[i = 2 : r = 3, m = 1; \quad j = 2 : s = 3, n = 1 \]
\[i = 3 : r = 1, m = 2; \quad j = 3 : s = 1, n = 2 \]
where \(g \) is the determinant of the metric tensor.

The Jacobian value of the coordinate transformation:

\[
J = \begin{vmatrix}
\frac{\partial y_1}{\partial x^1} & \frac{\partial y_1}{\partial x^2} & \frac{\partial y_1}{\partial x^3} \\
\frac{\partial y_2}{\partial x^1} & \frac{\partial y_2}{\partial x^2} & \frac{\partial y_2}{\partial x^3} \\
\frac{\partial y_3}{\partial x^1} & \frac{\partial y_3}{\partial x^2} & \frac{\partial y_3}{\partial x^3}
\end{vmatrix}
= \sqrt{\det g}
\tag{25}
\]

another expression of \(g^{ik} \)

\[
g^{ik} = g^i \cdot g^k = \frac{\partial x^i}{\partial y_k} \frac{\partial x^j}{\partial y_k}
\tag{26}
\]

Some examples:

Rectangular cartesian coordinates,

\(g_{ij} = \delta_{ij} \).

Cylindrical polar coordinates,

\(g_{11} = 1, g_{22} = \rho^2, g_{33} = 1 \), and \(g_{12} = g_{23} = g_{31} = 0 \).

Orthogonal curvilinear coordinates,

\(g_{ij} = 0, i \neq j \).

d. **Dot products in general coordinates**

1) Scalar products of two vectors

In generalized coordinates

\[
u \cdot v = (u^i g_i) \cdot (v^j g^j)
\tag{27}
\]

according to

\[
g_i \cdot g^j = \delta^j_i
\tag{28}
\]

we obtain:

\[
u \cdot v = u^i v_i
\tag{29}
\]

2) dot products of second order tensors
\[T = T_{ij} g^i g^j \quad S = S^{kl} g_k g_l \]

(30)

The dot products:

\[T \cdot S = (T_{ij} g^i g^j) \cdot (S^{kl} g_k g_l) \]

(31)

\[= T_{ij} g^i g^j S^{kl} g_k g_l \]

(32)

\[= T_{ij} S^{ij} g^i g_l \]

(33)

3) double dot products of second order tensors

The definition of double dot product:

\[(a b) : (c d) = (a \cdot c) (b \cdot d) \]

(34)

\[T : S = (T_{ij} g^i g^j) : (S^{kl} g_k g_l) \]

(35)

\[= T_{ij} S^{kl} (g^i \cdot g_k) (g^j \cdot g_l) \]

(36)

\[= T_{ij} S^{ij} \]

(37)

II. Differentiation of tensors

1. The differentiation of base vectors

1) derivatives of base vectors

\[\frac{\partial g_i}{\partial x^j} = \Gamma^1_{ij} g_1 + \Gamma^2_{ij} g_2 + \Gamma^3_{ij} g_3 = \Gamma^k_{ij} g_k \]

(38)

- \(\Gamma^k_{ij} \) Christoffel symbols of the second kind.

\[\Gamma^k_{ij} g_k \cdot g^l = \Gamma^k_{ij} \delta^l_k = \frac{\partial g_i}{\partial x^j} \cdot g^l \]

(39)

\[\Gamma^k_{ij} = \frac{\partial g_i}{\partial x^j} \cdot g^k \]

(40)
Christoffel symbols of the first kind:

\[
\frac{\partial g_i}{\partial x^j} = \Gamma_{ij}^1 g^1 + \Gamma_{ij}^2 g^2 + \Gamma_{ij}^3 g^3 = \Gamma_{ijk} g^k
\]

(41)

Formulas for the Christoffel symbols of the first kind are

\[
\Gamma_{ijk} = \frac{\partial g_i}{\partial x^j} \cdot g_k
\]

(42)

Calculation of Christoffel symbols

\[
\frac{\partial g_i}{\partial x^j} = \frac{\partial}{\partial x^j} \frac{\partial r}{\partial x^i} = \frac{\partial^2 r}{\partial x^j \partial x^i}
\]

(43)

and

\[
g^k = \frac{\partial x^k}{\partial y_l}
\]

(44)

\[
\Gamma_{ij}^k = \frac{\partial^2 y_l}{\partial x^i \partial x^j} \frac{\partial x^k}{\partial y_l}
\]

(45)

and

\[
\Gamma_{ijk} = \frac{\partial^2 y_l}{\partial x^i \partial x^j} \frac{\partial y_l}{\partial x^k}
\]

(46)

2) The relationship between the Christoffel symbols

\[
\Gamma_{ij}^k = \frac{\partial g_i}{\partial x^j} \cdot g^k = \frac{\partial g_i}{\partial x^j} \cdot g^{kl} = g^{kl} \Gamma_{ijl}
\]

(47)

similarly,

\[
\Gamma_{ijk} = g_{kl} \Gamma_{ij}^l
\]

(48)

\[
\frac{\partial g_i}{\partial x^k}?
\]

\[
g_i \cdot g^j = \delta_i^j
\]

(49)

\[
\frac{\partial g_i}{\partial x^k} \cdot g^j + g_i \cdot \frac{\partial g^j}{\partial x^k} = 0
\]

(50)

\[
\Gamma_{ik}^j = -g_i \cdot \frac{\partial g^j}{\partial x^k}
\]

(51)
\[\frac{\partial g^j}{\partial x^k} = -\Gamma^j_{ik} g^i \] (52)

3) Examples of Christoffel symbols:

(1) Cartesian coordinates (rectangular or generalized cartesian)

\[\Gamma^k_{ij} = \Gamma_{ijk} = 0 \] (53)

(2) Cylindrical polars

In cylindrical polar, all the components of \(\Gamma^k_{ij} \) are zero except for

\[\Gamma^2_{12} = \Gamma^2_{21} = \frac{1}{\rho}, \quad \Gamma^1_{22} = -\rho \] (54)

or the Christoffel symbol of the first kind,

\[\Gamma_{122} = \Gamma_{212} = \rho, \quad \Gamma_{221} = -\rho \] (55)

(3) Spherical polars

non-zero components of Christoffel symbols for spherical polar coordinates are

\[\Gamma^2_{12} = \Gamma^2_{21} = \frac{1}{r}, \quad \Gamma^3_{13} = \Gamma^3_{31} = \frac{1}{r} \] (56)

\[\Gamma^1_{22} = -r, \quad \Gamma^3_{23} = \Gamma^3_{32} = \cos \theta, \quad \Gamma^1_{33} = -r \sin^2 \theta, \quad \Gamma^2_{33} = -r \sin \theta \cos \theta \] (57)

2. Covariant derivatives of vector fields

\[\frac{\partial u}{\partial x^j} = u^i \frac{\partial g_i}{\partial x^j} + \frac{\partial u^i}{\partial x^j} g_i \]

\[= u^i \Gamma^k_{ij} g_k + \frac{\partial u^i}{\partial x^j} g_i = (\frac{\partial u^i}{\partial x^j} + \Gamma^i_{kj} u^k) g_i \] (59)

The covariant derivative of the contravariant vector \(u^i \).

\[u^i_{,j} = \frac{\partial u^i}{\partial x^j} + \Gamma^i_{kj} u^k \] (60)

\[\frac{\partial u}{\partial x^j} = u^i \frac{\partial g^i}{\partial x^j} + \frac{\partial u_i}{\partial x^j} g^i \]

\[= -u_i \Gamma^i_{kj} g^k + \frac{\partial u_i}{\partial x^j} g^i = (\frac{\partial u_i}{\partial x^j} - \Gamma^i_{jk} u^k) g^i \] (62)
The covariant derivative of the covariant vector u_i

$$ u_{i,j} = \frac{\partial u_i}{\partial x^j} - \Gamma^k_{ij} u_k \quad (63) $$

The relationship between these two kinds of covariant derivatives:

$$ \frac{\partial \mathbf{u}}{\partial x^j} = u_{i,j} g_i^j = u_{i}^{j} g_i = u_{j}^{i} g_i g^k = u_{j}^{k} g_k g^i \quad (64) $$

So

$$ u_{i,j} = g_{ik} u_{j}^{k} \quad (65) $$

3. Grad, div and curl

1) gradient of a scalar

The grad operator

$$ \text{grad} = \nabla = g^i \frac{\partial}{\partial x^i} \quad (66) $$

The gradient of a scalar:

$$ \text{grad} \phi = \nabla \phi = g^i \frac{\partial \phi}{\partial x^i} \quad (67) $$

$$ \text{grad} \phi = g^i \frac{\partial \phi}{\partial x^i} = g^{ij} g_j \frac{\partial \phi}{\partial x^i} \quad (68) $$

2) gradient of a vector

$$ \text{grad} \mathbf{u} = \frac{\partial \mathbf{u}}{\partial x^i} g_i^j \quad (69) $$

$$ \frac{\partial \mathbf{u}}{\partial x^i} = (\frac{\partial u^k}{\partial x^i} + u^j \Gamma^k_{ij}) g_k = u^k g_k \quad (70) $$

$$ \text{grad} \mathbf{u} = u^k g_k g^i \quad (71) $$
\[\frac{\partial \mathbf{u}}{\partial x^i} = u_k \mathbf{g}^k \quad (72) \]

\[\operatorname{grad} \mathbf{u} = \mathbf{v}_k \mathbf{g}^k \mathbf{g}^i \quad (73) \]

3) divergence of a vector

\[\operatorname{div} \mathbf{u} = \frac{\partial \mathbf{u}}{\partial x^i} \cdot \mathbf{g}^i \quad (74) \]

from

\[\frac{\partial \mathbf{u}}{\partial x^i} = \left(\frac{\partial u^k}{\partial x^i} + u^j \Gamma^k_{ij} \right) \mathbf{g}_k = u^k_{,i} \mathbf{g}_k \quad (75) \]

\[\operatorname{div} \mathbf{u} = \frac{\partial \mathbf{u}}{\partial x^i} \cdot \mathbf{g}^i = u^k_{,i} \mathbf{g}_k \cdot \mathbf{g}^i = u^i_{,i} \quad (77) \]

\[u^i_{,i} = \frac{\partial u^i}{\partial x^i} + \omega^i_{\ell} \Gamma^\ell_{ij} \quad (79) \]

\[\Gamma^i_{ij} = \left(\frac{\partial \ln(\sqrt{g})}{\partial x^j} \right) \quad (80) \]

so

\[u^i_{,i} = \frac{\partial u^i}{\partial x^i} + \omega^i_{\ell} \left(\frac{\partial \ln(\sqrt{g})}{\partial x^j} \right) \quad (81) \]

\[= \left\{ \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^j} \left(\sqrt{g} u^i \right) \right\} \quad (82) \]

\[\operatorname{div} \mathbf{u} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} \left(\sqrt{g} u^i \right) \quad (83) \]

4) divergence of a second-order tensor

A second order tensor can be written as

\[\mathbf{T} = T^{ij} \mathbf{g}_i \mathbf{g}_j \quad (84) \]
\[\frac{\partial T}{\partial x^k} = \frac{\partial T^{ij}}{\partial x^k} g_{ji} + T^{ij} g_{i} \Gamma_{jk}^m g_{m} \]
\[= \frac{\partial T^{ik}}{\partial x^k} g_{ik} + T^{ik} \Gamma_{ik}^m g_{m} g_{j} + T^{ij} g_{i} \Gamma_{jk}^m g_{m} \]
\[(85) \]
\[\frac{\partial T}{\partial x^k} \cdot g^k = \frac{\partial T^{ik}}{\partial x^k} g_{ik} + T^{ik} \Gamma_{ik}^m g_{m} + T^{ij} g_{i} \Gamma_{jk}^k g_{i} \]
\[= \frac{\partial T^{ik}}{\partial x^k} g_{ik} + T^{jk} \Gamma_{jk}^i g_{i} + T^{ij} \Gamma_{jk}^k g_{i} \]
\[(86) \]
\[\text{div} T = T_{ik} \ g_{ik} \]
\[(87) \]
\[T = T_{ij} \ g_{ij} \]
\[(88) \]
\[\text{div} T = g^{ik} T_{ij,k} \ g^i \]
\[(89) \]
\[T = T_{ij} \ g_{ij} \]
\[(90) \]
\[\text{div} T = g^{ik} T_{j,k} \ g_i \]
\[(91) \]
\[\text{where} \]
\[T_{ik}^{ij} = \frac{\partial T^{ij}}{\partial x^k} + \Gamma_{ik}^m T^{mj} + \Gamma_{im}^j T^{ik} \]
\[(92) \]
\[T_{ij,k} = \frac{\partial T_{ij}}{\partial x^k} - \Gamma_{ik}^m T_{mj} - \Gamma_{jk}^m T_{im} \]
\[(93) \]
\[T_{j,k}^i = \frac{\partial T_{ij}}{\partial x^k} + \Gamma_{mk}^i - \Gamma_{jk}^m \]
\[(94) \]
\[5) \text{curl of vectors} \]
\[\text{curl} \ u = g^i \times \frac{\partial u}{\partial x^i} \]
\[(95) \]
\[\text{curl} \ u = \frac{1}{\sqrt{g}} e^{ijk} u_{k,j} g_i \]
\[(96) \]
\[\text{where} \ e^{ijk} \text{ are the permutation symbols.} \]
\[e^{ijk} = \begin{cases}
0 & \text{if any of } i, j, k \text{ are the same} \\
+1 & \text{if } (i, j, k) \text{ is a cyclic permutation of } (1, 2, 3) \\
-1 & \text{otherwise}
\end{cases} \]
\[(97) \]
III. Tensor expression of basic terms in fluid mechanics

1. convective terms

The acceleration term:

\[a = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \text{grad}) \mathbf{u} \]
100

\[= \frac{\partial \mathbf{u}}{\partial t} + (\text{grad} \mathbf{u}) \cdot \mathbf{u} \]
101

\[= \frac{\partial \mathbf{u}}{\partial t} + \text{div}(\mathbf{uu}) - \mathbf{u}(\text{div} \mathbf{u}) \]
102

\[= \frac{\partial \mathbf{u}}{\partial t} + \text{grad}(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}) + \omega \times \mathbf{u} \]
103

1) \((\mathbf{u} \cdot \text{grad}) \mathbf{u}\)

\[\mathbf{u} = u^i \mathbf{g}_i \]
104

\[\text{grad} = \mathbf{g}^i \frac{\partial}{\partial x^i} \]
105

\[(\mathbf{u} \cdot \text{grad}) \mathbf{u} = u^i \frac{\partial \mathbf{u}}{\partial x^i} \]
106

\[= u^i u^j \mathbf{g}_j \]
107

2) \(\text{div}(\mathbf{uu})\)

\[\mathbf{uu} = u^i u^j \mathbf{g}_i \mathbf{g}_j \]
108

\[\text{div}(\mathbf{uu}) = (u^i u^k) \cdot \mathbf{g}_i \]
109

3) \(\text{grad}(\frac{1}{2} \mathbf{u} \cdot \mathbf{u})\)

\[\text{grad}(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}) = \frac{1}{2} u^i u_i = \frac{1}{2} g_{ij} u^i u^j \]
110

2. pressure gradient term
\[\nabla \eta = \frac{\partial \eta}{\partial x^i} g^i \]
\[= \frac{\partial \eta}{\partial x^i} g^{ij} g_j = \eta^{ij} g_j \]
\((111) \)
\((112) \)

where \(\eta^{ij} \) is the contravariant component of the gradient.

3. diffusion terms

\[\text{div} T = \text{div}(\nu D) \]
\((113) \)

\(D \) is the rate-of-strain tensor:

\[D = \frac{1}{2} \left[\text{grad} u + (\text{grad} u)^T \right] \]
\((114) \)

\((\text{grad} u)^T \) is the transpose of \(\text{grad} u \).

\[\text{div} T = \frac{1}{\sqrt{g_0}} \frac{\partial \sqrt{g_0} \nu D^{ik}}{\partial x^k} a_i + \nu D^{ik} \Gamma_{jk}^i a_i \]
\((115) \)

Smagorinsky’s subgrid turbulence

In rectangular cartesian coordinates:

\[\nu_s = c \Delta x \Delta y \frac{1}{2} \left| \text{grad} u + (\text{grad} u)^T \right| \]
\((116) \)

In curvilinear coordinates:

\[\nu_s = c \sqrt{g_0} \Delta \xi_1 \Delta \xi_2 |D| \]
\[= c \sqrt{g_0} \Delta \xi_1 \Delta \xi_2 (D : D)^{1/2} \]
\[= c \sqrt{g_0} \Delta \xi_1 \Delta \xi_2 (D^{ij} D_{ij})^{1/2} \]
\((117) \)

IV. Two examples of coordinate transformations

1. Boussinesq equations in curvilinear coordinates
Boussinesq equations in rectangular cartesian coordinates:

\[\eta_t + \nabla \cdot \mathbf{M} = 0, \]
(118)

\[\begin{aligned} \mathbf{M} &= (h + \eta)\mathbf{u} + (h + \eta)\left(\frac{z_a^2}{2} - \frac{1}{6}(h^2 - h\eta + \eta^2) \right) \nabla(\nabla \cdot \mathbf{u}) \\
&\quad + (h + \eta)[z_a + \frac{1}{2}(h - \eta)] \nabla[\nabla \cdot (h\mathbf{u})], \end{aligned} \]
(119)

\[\begin{aligned} \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + g\nabla \eta + \mathbf{V}_1 + \mathbf{V}_2 &= 0, \end{aligned} \]
(120)

\[\begin{aligned} \mathbf{V}_1 &= \frac{z_a^2}{2} \nabla(\nabla \cdot \mathbf{u}_t) + z_a \nabla[\nabla \cdot (h\mathbf{u}_t)] - \nabla[\frac{1}{2}\eta^2 \nabla \cdot \mathbf{u}_t + \eta \nabla \cdot (h\mathbf{u}_t)], \end{aligned} \]
(121)

\[\begin{aligned} \mathbf{V}_2 &= \nabla \{ (z_a - \eta)(\mathbf{u} \cdot \nabla)[\nabla \cdot (h\mathbf{u})] + \frac{1}{2}(z_a^2 - \eta^2)(\mathbf{u} \cdot \nabla)(\nabla \cdot \mathbf{u}) \} \\
&\quad + \frac{1}{2} \nabla \{ [\nabla \cdot (h\mathbf{u}) + \eta \nabla \cdot \mathbf{u}]^2 \}. \end{aligned} \]
(122)

1) transformation of mass equation

\[\eta_t + \nabla \cdot \mathbf{M} = 0, \]
(123)

where \(\mathbf{M} \) is the depth-integrated volume flux given by

\[\begin{aligned} \mathbf{M} &= (h + \eta)\mathbf{u} + (h + \eta)\left(\frac{z_a^2}{2} - \frac{1}{6}(h^2 - h\eta + \eta^2) \right) \nabla(\nabla \cdot \mathbf{u}) \\
&\quad + (h + \eta)[z_a + \frac{1}{2}(h - \eta)] \nabla[\nabla \cdot (h\mathbf{u})], \end{aligned} \]
(124)

Tensor invariant forms:

\[\eta_t + \frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^k}(\sqrt{g_0}M^k) = 0, \]
(125)
\[M^k = (h + \eta)u^k + (h + \eta)[\frac{z_2}{2} - \frac{1}{6}(h^2 - h\eta + \eta^2)][\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l)]^k \]
\[+ (h + \eta)[z_\alpha + \frac{1}{2}(h - \eta)][\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h^l)]^k. \] (126)

2) transformation of momentum equations

\[\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} + g \nabla \eta + \mathbf{V}_1 + \mathbf{V}_2 = 0, \] (127)

The tensor invariant form:

\[\frac{\partial u^k}{\partial t} + g\eta^k + u^l u^k + V_1^k + V_2^k = 0, \] (128)

\[\mathbf{V}_1 = \frac{z_2}{2} \nabla(\nabla \cdot \mathbf{u}_t) + z_\alpha \nabla[\nabla \cdot (h\mathbf{u}_t)] - \nabla[(\frac{1}{2}\eta^2 \nabla \cdot \mathbf{u}_t + \eta \nabla \cdot (h\mathbf{u}_t)], \] (129)

Tensor invariant form:

\[V_1^k = \frac{z_2^2}{2} \left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l) \right]^k \]
\[+ z_\alpha \left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h^l) \right]^k \]
\[- \left[\frac{\eta^2}{2\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l) \right] + \eta \left[\frac{\partial}{\partial x^l}(\sqrt{g_0}h^l) \right]^k, \] (130)

\[\mathbf{V}_2 = \nabla \{(z_\alpha - \eta)(\mathbf{u} \cdot \nabla)[\nabla \cdot (h\mathbf{u})] + \frac{1}{2}(z_2^2 - \eta^2)(\mathbf{u} \cdot \nabla)(\nabla \cdot \mathbf{u}) \}
\[+ \frac{1}{2} \nabla \{[\nabla \cdot (h\mathbf{u}) + \eta \nabla \cdot \mathbf{u}]^2 \}. \] (131)

Tensor invariant form:

\[V_2^k = \{(z_\alpha - \eta)u^l \frac{\partial}{\partial x^l} \left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^m}(\sqrt{g_0}h^m) \right] \}^k \]
\[+ \frac{1}{2}(z_2^2 - \eta^2)u^l \frac{\partial}{\partial x^l} \left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^m}(\sqrt{g_0}u^m) \right] \}^k \]
\[+ \frac{1}{2} \left[\left[\frac{1}{\sqrt{g_0}} \frac{\partial}{\partial x^l}(\sqrt{g_0}h^l) + \eta \frac{\partial}{\partial x^l}(\sqrt{g_0}u^l) \right]^2 \right] \}^k, \] (132)
2. Shore circ equations in curvilinear coordinates

1) PS99, eqn (9) depth-integrated momentum equations:

\[
\frac{\partial}{\partial t}(\vec{V} h) + \nabla_H \cdot [(\vec{V}^\alpha \vec{V}^\beta h + \int_{-h_0}^{\xi} V^\alpha_i V^\beta_i dz + Q^\alpha_i V^\beta_i (\zeta) + V^\alpha_i (\zeta) Q^\beta_i) a_\alpha a_\beta] + \frac{1}{\rho} \nabla_H \cdot T + \frac{1}{\rho} \nabla_H \cdot S + gh \nabla \zeta - \frac{1}{\rho} \tau_s + \frac{1}{\rho} \tau_B = 0
\]

2) The general form of the horizontal momentum equation PS99 (10):

\[
\frac{\partial u_H}{\partial t} + (\nabla \cdot (u u))_H = -\frac{1}{\rho} (\nabla p)_H
\]

where \(u = u_H + w \), \(()_H \) means the horizontal components.

\[
(\nabla \cdot (u u))_H = (u^\alpha u^k)_{,k} a_\alpha
\]

\[
= \nabla_H \cdot (u_H u_H) + (u^\alpha w)_{,z} a_\alpha
\]

where \(\alpha = 1, 2 \) and \(k = 1, 2, 3 \).

Expanding \((u^\alpha w)_{,z} \) and using coordinate transformation

\[
(u^\alpha w)_{,z} = \frac{\partial u^\alpha w}{\partial z} + \Gamma^\alpha_{\beta\gamma} u^\beta w + \Gamma^3_{\beta\gamma} u^\alpha u^3
\]

\[
= \frac{\partial u^\alpha w}{\partial z}
\]

\[
(\Gamma^\alpha_{\beta\gamma} = \Gamma^3_{\beta\gamma} = 0)
\]

\[
(\nabla \cdot (u u))_H = \nabla_H \cdot (u_H u_H) + \frac{\partial u^\alpha w}{\partial z} a_\alpha
\]
In the tensor-invariant form:

\[
\frac{\partial u^\alpha}{\partial t} + (u^\alpha u^\beta)_{,\beta} + \frac{\partial}{\partial z} (u^\alpha w) = -\frac{1}{\rho} \frac{\partial p}{\partial \xi_\beta} g^{\beta\alpha}
\]

(140)

Acceleration term in noninertial coordinates

Coordinate transformation:

\[
x^i = x^i(y_1, y_2, y_3, t), \quad \tau = t
\]

(141)

or inverse transformation:

\[
y_m = y_m(x^i, x^2, x^3, \tau), \quad t = \tau
\]

(142)

Acceleration term:

\[
a = \frac{Dv^i}{D\tau} g_i - (\frac{\partial w^i}{\partial \tau} + 2 v^j w^i_{,j} - w^i w^i_{,j}) g_i
\]

(143)

where

\[
v^i = \frac{dx^i}{dt} \quad \text{— relative velocity components}
\]

\[
w^i = \frac{\partial x^i}{\partial \tau} |_{y_m} \quad \text{— frame velocity components}
\]