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ABSTRACT

New Boussinesq-type equations are derived for surface water wave propagation

and currents in relatively shallow water regions. The new equations are fully nonlin-

ear and accurate to O(µ2), with µ the indicator of wave dispersion. 1-D and 2-D com-

puter models (FUNWAVE1D2.0 and FUNWAVE2D2.0) are developed based on the new

Boussinesq equations for wave current modeling. The new Boussinesq models are based

on a staggered grid system. The FUNWAVE2D2.0 model is also based on generalized

curvilinear coordinate to fit complex nearshore geometries. Wave breaking introduced

undertow currents are included in the dependent reference velocities automatically. The

new equations retain vertical vorticity generated by wave breaking and bottom friction

to the second order of dispersion. Wetting and drying algorithm is developed to model

wave run up and run down and track shoreline change instantaneously. Phase resolving

sediment transport is integrated into the Boussinesq wave current model to investigate

nearshore morphological change due to wave and current forces (FUNSEDI1D1.0 and

FUNSEDI2D1.0). A non-oscillatory Euler-WENO morphological scheme is developed

to model the interaction between hydrodynamics and morphological change accurately

and stably as compared to classical Lax-Wendroff schemes. 1-D vertical wave current

bottom boundary layer models are developed to calculate the bottom shear stresses in-

stantaneously. Classical sediment transport formulas are implemented and compared to

investigate their performance for unsteady, transient flow as well as skewed and asym-

metric waves introduced sediment transport in nearshore region. The model is applied

to simulate DUCK’94 field measurement to investigate both accretional and erosional

events of sand bar migration. The LIP11 lab experiment is also simulated to further test

xxvi



the performance of the model. The present sediment transport model can also be used to

examine future transport formulas for unsteady flow system.
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Chapter 1

INTRODUCTION

We can not overestimate the importance of the understanding of nearshore hy-

drodynamics and morphodynamics. The reason is that our civilization up to date has

presented us extensive and intensive interactions within the coastal areas where we have

a vast diversity of life and natural processes as well as economical operations. “Along

this dynamically active intersection of land and the oceans, humans have been building

structures throughout history. Ports and harbors have always served as bases for naval

forces and as commercial egresses to upland trade routes or major centers of society. As

recreation and tourism at the shoreline have become more and more important econom-

ically, coastal development, has increased to such an extent that over 50 percent of the

U.S. population now lives within 50 miles of the coastline” (Dean and Dalrymple, 2002).

As coastal engineers, we are aiming at understanding of coastal processes and developing

strategies to cope effectively with shoreline erosion and building coastal structures to bet-

ter serve our community. With the pressure of population on the shoreline and the threat

of sea level rise, tsunamis and coastal storms, we are in great need of more advanced

knowledge of coastal processes such as waves, currents, sediment transport mechanics

and ecology.

Ocean surface waves are the dominant feature of the nearshore region. Waves are

generated by the interaction between the atmosphere and ocean surface water in relatively

deep region and propagate to shoreline shallow water areas, where the wave energy is

dissipated. “The energy associated with these waves is surprisingly large and it is to a

1



large degree expended in the nearshore region through the process of wave breaking. The

rate at which energy is expended in the surf when the breakers are about 1 m high is

approximately equivalent to 3kW /m of beach, i.e. the rate at which energy is dissipated

along 400 km of this beach is equivalent to the rate of energy production of a nuclear

power plant” (Madsen, 1976). With this tremendous amount of wave energy, it is not

surprising that waves can change the appearance of the shoreline and nearshore bottom

bathymetry drastically and constantly.

During the propagation from the deep ocean to the shore, waves undergo many

changes because of the changing depth. When the water is sufficiently deep, the waves are

unaware of the presence of the bottom. As the depth decreases the waves start to feel the

bottom and sediments on the bottom start to feel the waves. The oscillatory water motion

associated with the waves exerts an oscillatory shear stress on the bottom, which may be

shown to be several times larger than the shear stress associated with a steady current of

comparable magnitude due to the acceleration and deceleration of fluid particles within a

wave cycle. The water velocity, immediately above the bed, associated with the waves is

to the first approximation purely oscillatory, i.e. it moves back and forth without any net

motion, resulting to purely oscillatory shear stress on the bottom and purely oscillatory

sediment movement. Though the magnitude of shear stress associated with the wave

motion where capable of setting the bottom sediment in motion, the net movement of

sediment would be still small. The importance of the wave motion is evident when there

is a superposed slowly varying current which can be generated by various reasons. The

larger shear stress exerted on the bottom by the wave motion can stir up the sediment

which then can be moved even by a current, which by itself would have been incapable

of causing any near bed sediment transport. This is a qualitative description of sediment

transport processes on continental shelf.

In the nearshore region, various effects modify the wave features. Wave skewness

is mainly due to nonlinearity of wave-wave interaction and presents sharp and peaky wave
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crests along with wide and flat wave troughs. Wave shoaling is the gain of wave height

due to the decrease of water depth. Wave asymmetry results from the nonlinear transfer

of energy from lower to higher harmonics as waves shoal and the waves become pitched

forward with a steep slope in the front of a wave crest and a mild slope on the back. Wave

skewness and asymmetry will lead to non-purely oscillatory bottom shear stress and again

result to a non-purely oscillatory movement of bottom sediments which overall can give

a net transport of sediment toward the direction of wave propagation, even when there is

no superposed current.

Waves shoal, skew and pitch forward until they finally break drastically. This

wave breaking phenomenon involves a number of new features not seen offshore of the

breaker zone (surf zone). The dominant effects of wave breaking inside the surf zone are

the wave setup, undertow and longshore currents. Wave setup is the time averaged water

level increase in front of the shore face with a slope about 10 to 100 times larger than

a river surface. This slope of wave setup helps develop a pressure gradient pointing in

the offshore direction which helps develop a return current near the bottom of the vertical

water column toward the ocean. This return flow is called undertow. With the help of

various beach bathymetry features, such as a cut in the middle of a sand bar, the undertow

will show three dimensional personalities and develop concentrated jets toward the ocean

known as rip currents which cause about 150 life losses per year to swimmers in the

United States. More often, waves approach the shoreline at an angle, which will exert a

shearing force parallel to the shoreline and results in currents flowing downstream along

the shoreline. These longshore currents greatly account for sediment transport along the

shoreline and its spatial and temporal variations are responsible for the change of coast

lines over long period of time (shoreline recession, shoreline advance, beach erosion and

accretion).

Wave skewness and asymmetry will introduce more sediment transport toward the

direction of wave propagation in the forward phase of a wave cycle than the amount in
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the counter direction of wave propagation in the backward phase. The overall effect for

a non-breaking but skewed and asymmetric wave motion in nearshore generally will lead

to sediments moving toward shoreline until the surf zone where undertow and alongshore

currents change the scenario to be much more sophisticated.

The coastal environment is further complicated by the presence of river estuaries,

tidal inlets and man-made coastal structures. Powerful wave breaking will also introduce

dramatic water motion such as plunging breakers which can greatly impinge on shallow

water bed and suspend a lot of sediments to be transported by the whole vertical column

of water. Sometimes the movable bottom behaves as an unstable system which could de-

velop various bed forms such as ripples, mega ripples, dunes and sand bars. The presence

of relatively large bed forms will affect the behavior of waves, and also develop form drag

that will further introduce sediment movements in addition to shear stresses.

The interactions between water wave, current motion and morphological bed forms

go on and on. However sometimes equilibrium states are reached and the geometry of

nearshore system stays relatively stable.

In the present research, we focus on computer modeling of nearshore waves and

currents and sediment transport as well as morphological changes based on advanced

wave theories and bottom boundary layer models along with high-order non-oscillatory

morphological schemes.

1.1 Wave and Current Modeling

We have an abundant heritage of observations, experiments and mathematics of

water wave mechanics. It has been developed over centuries along with the flourish-

ing of general fluid mechanics, measurement techniques, experimental instruments and

advanced by computer science and technology in the last 50 years. Computer modeling

becomes an important and efficient tool to explore the world of nearshore hydrodynamics.

Gerstner (1802) published the first deep water wave theory followed by Airy

(1841) of linear wave theory, Stokes (1847) for higher order nonlinear wave, long wave

4



theories by Boussinesq (1871) as well as waves of limiting heights by Michell (1893) and

McCowan (1894).

Wave transformations including shoaling, refraction and diffraction can be mod-

eled by mild slope equation theory by Berkhoff (1972) and its parabolic versions (Radder,

1979; Tsay and Liu, 1982; Kirby and Dalrymple, 1984). The University of Delaware

Center for Applied Coastal Research REF/DIF model is one of the well recognized wave

models for relatively large scale open ocean wave simulation based on parabolic mild

slope equations.

Parabolic mild slope models can not cope with complicated coastal regions where

islands, breakwaters, jetties and other structures are involved, due to neglect of wave

reflection from structures. On the other hand, phase resolving wave models have been

developed based on Boussinesq (1871) theory with the extension to variable depth by

Peregrine (1967) and further extended to relatively deep water dispersive waves (Witting,

1984; Madsen and Sorensen, 1992; Nwogu, 1993) and higher order nonlinearity by Wei

et al. (1995) and Gobbi et al. (2000). The Boussinesq models can provide much more

detailed information of wave motion. An extensive review is available in Kirby (2003).

Different numerical methods have been used to solve the Boussinesq-type equa-

tions. Abbott et al. (1978) used an alternating-direction-implicit (ADI) finite difference

method (FDM) to solve 2D Boussinesq equations which later became the standard method

used in DHI MIKE 21 system (DHI, 2002). Walkley and Berzins (2002) and Sorensen et

al. (2003) applied finite element method (FEM) and Wei et al. (1995) used the 3rd order

Adams-Bashforth predictor and the 4th order Adams-Moulton corrector method (ABM)

for higher order nonlinearity Boussinesq model FUNWAVE (Kirby et al., 1998). Shi et al.

(2001, 2003) solved the Wei et al. (1995) equation in generalized curvilinear coordinates

also using ABM finite difference method.

The numerical model FUNWAVE1.0 produced by the Center for Applied Coastal

Research, University of Delaware (Kirby et al., 1998), is capable of simulating surface
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waves in coastal region including the outer surf zone and inner surf zone. The model is

based on theoretical research of Wei et al. (1995) in which a fully nonlinear Boussinesq

equation is set up by extending Nwogu (1993)’s Boussinesq equation with higher order

nonlinear dispersive terms fully retained. The Wei et al. (1995) equation can be applied to

both intermediate water depth and strong nonlinearity interaction in practical engineering.

After FUNWAVE1.0 was released, further work has been continuously done by

Gobbi et al. (2000), Kennedy et al. (2001), Chen et al. (2003), Shi et al. (2001) and

Chawla and Kirby (2000). In Gobbi et al. (2000), the equation is extended to fourth

order accuracy of dispersion and multi-reference-level is introduced compared to Nwogu

(1993) and Wei et al. (1995). In Kennedy (2001), the reference level of Wei et al. (1995)

is extended to be moving with the surface elevation. In Chen et al. (2003), a second

order vertical vorticity term is further incorporated in the equation which is capable of

simulating eddies in the horizontal plane generated after wave breaking in the surf zone.

In Shi et al. (2001), the Wei et al. (1995) equation is solved on curvilinear coordinate

system and implemented on staggered grids to give better accuracy and convergence rate,

so that it can simulate waves with complex geometries. In Chawla and Kirby (2000) a

one-way wave maker theory for the model is established by adding a pressure term to the

momentum equation compared to Wei et al. (1999), in which a two-way numerical wave

maker is developed by including a source term in the continuity equation.

In the present research, we derive a set of Boussinesq equations that can cover all

existing Boussinesq equations based on Nwogu (1993) and Wei et al. (1995) mentioned

above (Madsen et al., 1992; Nwogu, 1993; Wei et al., 1995; Kennedy et al., 2001; Chen et

al., 2003; Gobbi et al., 2000) to second order in dispersion. The new equation is extended

to include breaking wave induced undertow automatically in the reference velocity, based

on the roller model of spilling breaker (Svendsen, 1984, Schäffer et al., 1993) and the

recent work of Lynett (2005).

The new equation system is solved in generalized curvilinear coordinates as in
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Shi et al. (2001). Internal boundaries of islands and breakwaters are included in the

model, as well as a new but quite simple wetting and drying algorithm developed to

model the moving shoreline in the swash zone. This research effort finally resulted into a

new version of FUNWAVE model here named FUNWAVE2.0, available for public under

the GNU General Public License agreement.

In summary, the following are the new features in FUNWAVE2.0: 1) staggered

grid system; 2) generalized curvilinear coordinate system; 3) Multi-reference-levels and

moving reference levels included; 4) vertical vorticity term retained; 5) one-way wave

maker; 6) internal boundaries for structures; 7) undertow included automatically; 8) new

wetting-drying algorithm for wave runup;

In addition, the new model can output more kinematic and dynamic quantities

such as temporal wave gage, spatial wave gage, pressure, mean current, set-up/set-down,

wave heights, potential vorticity.

The wave breaking simulation, subgrid-mixing, bottom friction and sponge layers

are kept the same as in version 1.0. Detailed derivations, numerical methods and examples

will be shown in later chapters of this dissertation.

1.2 Sediment Transport and Morphology

In comparison to the hydrodynamic processes of waves and currents, the field of

coastal sediment transport and morphology is still as much an art as a science and re-

quires a good deal of future investigation. At this time, the mathematical and statistical

equations governing the behavior of sediments are not yet fully known. Our knowledge

and ability to model the process of sediment transport are limited by the following re-

maining difficulties: turbulent bottom boundary layer of waves and currents, turbulent

flow of heterogeneous mixture composed of sands, mud and water, the limited power of

computer resources and the limited techniques available for measuring the sediment flow

and forcing.
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Earlier studies of sediment transport started from the investigation of rivers, chan-

nels and pipelines with which the flow are dominantly one directional and relatively

steady in time. In Chanson (1999), eight different empirical and semi-empirical corre-

lations of bed load transport for open channel flow are nicely summarized. They are Du

Boys (1879), Schoklitsch (1930), Shields (1936), Einstein (1942), Meyer-Peter (1948,

1951), Einstein (1950), Schoklitsch (1950) and Nielson (1992). Other formulas for bed-

load sediment transport or total load sediment transport (bedload plus suspended load) are

given by Bagnold (1966), Grass (1981), Van Rijn (1984) and many other contributors. For

sediment transport due to waves or combined waves and currents, up to date formulas are

mostly based on the quasi-steady assumption (assume the sediment particles respond to

the fluid flow as if the flow were steady when the flow changes from one state to another),

which include Einstein (1972), Madsen and Grant (1976) and Bailard (1981). Recently

developed transport formulas are also available from Dibajnia and Watanabe (1998) and

Soulsby and Damgaard (2005).

The assumption of quasi-steady state employed before has been recently seriously

questioned based on both experimental and theoretical results. A significant amount of

evidence has shown that sediment transport under waves calls for models which reflect

the effects of unsteadiness of the driving flow field, as it is the nature of waves, especially

when mean currents are weak relative to wave-orbital velocities and wave skewness and

asymmetry that are prominent as waves approach shoreline.

Very fine scale discrete particle simulations by Drake and Calantoni (2001) show

that Bagnold, Bowen and Bailard (abbreviated as BBB hereafter) type of sediment trans-

port models, which were derived under steady flow or quasi-steady flow assumption, miss

important effects due to flow acceleration. The Bailard (1981) formula was then modi-

fied in an ad-hoc manner to improve its capability for capturing the flow acceleration-

related transport. This approach was applied to fields measurement of bar migration in

the DUCK94 experiment by Hoefel and Elgar (2003).
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Another important feature of sediment transport under waves is the phase lag be-

tween the sediment motion and wave fluid motion. The sediments lying on the bottom

feel the shear stress exerted by waves instead of the orbital velocity of waves. Due to the

viscous nature of fluid and turbulence within a thin bottom boundary layer, the shear stress

has a significant phase difference with the wave motion. This phase lag can not be mod-

eled by traditional bottom shear stress parameterizations which rely on a wave-current

friction coefficient and the orbital velocity. The phase lag effect becomes important es-

pecially for skewed and asymmetric waves and when the currents are relatively weak.

The importance of phase lag and its effect on sediment transport rate is also shown in

Dohmen-Janssen et al. (2002) experiments.

There is still a large room to improve our grasp on sediment transport for highly

variable wave current environment with both free stream flow acceleration, phase lag, and

other effects.

In Drake and Calantoni (2001), the free stream flow is prescribed based on su-

perposition of sinusoidal wave orbital velocities. Advances made in the past two decade

on time-domain modeling of waves and currents across the surfzone have enabled us to

obtain improved estimates of instantaneous near bottom fluid velocities. Rakha et al.

(1997) and Karambas and Koutitas (2002) have both used Boussinesq models to obtain

predictions of surfzone hydrodynamics, and have then used averages of the instantaneous

quantities to obtain the statistical moments needed to drive wave-averaged transport mod-

els. In contrast, Long and Kirby (2003) have used Boussinesq model predictions to drive

an instantaneous transport model, allowing morphology changes to accumulate on a wave

by wave basis. Qualitatively accurate representation of onshore bar migration movement

was achieved. Similar success with a calibrated transport formula in a wave-averaged

setting has been demonstrated by Hoefel and Elgar (2003).

While the results obtained by Long and Kirby (2003) are encouraging, the for-

mula used there has no specific mechanical underpinning. Recently, in a small-scale
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two-phase sheet flow model, Hsu et al. (2003) and Hsu and Hanes (2004) demonstrated

that the instantaneous sediment transport rate under unsteady forcing follows the instan-

taneous bed shear stress closely. Motivated by the work of Hsu et al. (2004), the goal

of the present work is to use a more appropriate, mechanically-based model for the lo-

cal boundary layer structure and sediment transport rate over the vertical, integrated with

the Boussinesq model in order to provide a profile evolution model. As is pointed out

by recent work in Hsu et al. (2004), major transport of sediments occurs within a very

concentrated layer near the bed so that bedload transport rate is our main concern here.

Previous work such as Ribberink (1998), Hsu and Hanes (2004) and Long and Kirby

(2003) tried to estimate bedload transport rate using instantaneous bed shear stress esti-

mated through simple power laws, and their model accuracy relies strongly on the bed

shear stress prediction.

This part of research in this dissertation incorporates the newly developed Boussi-

nesq model FUNWAVE2.0 and a wave boundary layer model (Hsu et al., 2004, Justesen,

1988) so that advantages of both of them are exploited. The final goal of this research is

to provide an advanced hydrodynamic and sediment transport model in nearshore region.

Specific tasks include:

1. Couple the Boussinesq model with a boundary layer model to provide accurate

phase-resolving hydrodynamic quantities including velocity profiles and bottom

shear stress

2. Propose a reasonable phase-resolving bedload sediment transport model based on

more physical grounds

3. Model the morphology change due to sediment transport introduced scour and de-

position in space

4. Couple the morphology change with the Boussinesq hydrodynamic model in order

to calculate evolution over extended time periods.
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Chapter 2

DERIVATION OF NEW BOUSSINESQ EQUATIONS

In this chapter, we derive a set of Boussinesq equations that can cover all versions

of equations related to FUNWAVE1.0 systematically, and further extend them to include

more new features such as arbitrary vertical level choices of momentum equation as well

as inclusion of undertow in the reference velocities. The new equations are derived both

from potential flow theory and the Euler equations.

With the schematic layout of the system shown in Figure 2.1, the following co-

ordinates and definition of symbols will be used for mathematical description of 3-D

flow system typically in the nearshore area. Cartesian coordinates (x, y, z) are defined as

right-hand coordinate system with (x, y) for horizontal dimensions, and z perpendicularly

upward. The origin of z is defined at a datum level or still water level (SWL). Topography

of the sea bottom is defined by function zb(x, y, t), and free surface elevation is defined by

η(x, y, t). Flow field is defined by vector u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

with u, v, w the velocity component in x, y, z direction respectively. Total depth is de-

noted by H = η − zb = η + h, where still water depth is denoted by h = −zb .

The following non-dimensional variables are also defined

x′ = k0x, y
′ = k0y, z

′ = z/h0, t
′ = k0C0t (2.1)

η′ = η/a0, h
′ = h/h0 (2.2)

where ()’ means nondimensional quantities, and () means dimensional quantities. Then,

φ′ =
φ

φ0

;φ0 =
a0C0

k0h0

; (u′, v′) =
h0

a0C0

(u, v);w′ =
k0h

2
0

a0C0

w; p′ =
p

ρga0

(2.3)
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Figure 2.1: Schematic system layout

where l0 is typical wave length, l0 = 2π/k0; C0 is typical phase speed, C0 =
√
gh0;

h0 is typical water depth; a0 is typical wave amplitude; k0 is typical wave number. p =

p(x, y, z, t) is pressure field, g is gravitational acceleration.

Two important dimensionless parameters are identified here: µ = k0h0 and δ =

a0/h0. µ indicates the degree of dispersion, and δ indicates the degree of nonlinearity in

the wave field.

We proceed by first listing equations that has already been coded in FUNWAVE1.0,

which include Wei et al. (1995), and new developments by Kennedy et al. (2001) and

Chen et al. (2003). Then we present the derivation of Gobbi et al. (2000) to obtain a set of

Boussinesq equations in which the representative velocity is based on weighted average

of two representative velocities defined at two reference levels, with derivations from po-

tential flow theory as in Nwogu (1993) and Wei et al. (1995). Next, the equation of Gobbi

et al. (2000) is re-derived from the Euler equation at the same time rendering a new set of

equations, in which the momentum equation is physically the momentum balance of fluid
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on an arbitrary level other than the free surface elevation. Further, we present a depth

integrated momentum equation, which include the effects of wave breaking introduced

undertow based on the roller model (Svendsen, 1984; Schäffer et al., 1993) and Lynett

(2005).

2.1 Previous Sets of Boussinesq Equations

2.1.1 Equations of Wei et al. (1995), O(µ2)

The equation system given by Wei et al. (1995) is written as a conservation of

mass equation (COM)

ηt + ∇ · M = 0 (2.4)

where

M = (h+ δη){uα + µ2[
1

2
z2

α − 1

6
(h2 − hδη + δ2η2)]∇(∇ · uα)

+ µ2[zα +
1

2
(h− δη)]∇[∇ · (huα)]} +O(µ4) (2.5)

and an equation of motion (EOM)

uαt + δ(uα · ∇)uα + ∇η + µ2V1 + δµ2V2 = O(µ4) (2.6)

where

V1 =
1

2
z2

α∇(∇ · uαt) + zα∇[∇ · (huαt)] −∇[
1

2
(δη)2∇ · uαt + δη∇ · (huαt] (2.7)

V2 = ∇{(zα − δη)(uα · ∇)[∇ · (huα)] +
1

2
(z2

α − δ2η2)(uα · ∇)(∇ · uα)}

+
1

2
∇{[∇ · (huα) + δη∇ · uα]2}, (2.8)

with

zα = [(1 + 2α)1/2 − 1]h ≈ −0.531h (2.9)

α =
1

2
(
zα

h
)2 +

zα

h
≈ −0.390. (2.10)

uα is velocity at z = zα: uα = (∇φ)z=zα
.
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2.1.2 Equations of Kennedy et al. (2001), O(µ2)

The conservation of mass (COM) equation is

ηt + ∇ · M = 0 (2.11)

where

M = (h+ δη){uα + µ2[
1

2
z2

α − 1

6
(h2 − hδη + δ2η2)]∇(∇ · uα)

+ µ2[zα +
1

2
(h− δη)]∇[∇ · (huα)]}.+O(µ4) (2.12)

Equations (2.11) (2.12) are identical to equations (2.4) (2.5).

The equation of motion (EOM) is

uαt + δ(uα · ∇)uα + ∇η + µ2V1 + δµ2V2 = O(µ4), (2.13)

where

V1 = [
1

2
z2

α∇(∇ · uα) + zα∇[∇ · (huα)]]t −∇[
1

2
(δη)2∇ · uαt + δη∇ · (huαt)] (2.14)

V2 = ∇{(zα − δη)(uα · ∇)[∇ · (huα)] +
1

2
(z2

α − δ2η2)(uα · ∇)(∇ · uα)}

+
1

2
∇{[∇ · (huα) + δη∇ · uα]2}. (2.15)

Equation (2.14) is different from (2.7) by the presence of time derivatives are outside of

the square bracket due to the representative water level zα that is moving in time according

to

zα = ρ0h+ β0δη, (2.16)

and

zαt = β0δηt (2.17)

For a special case (ρ0 = β0 − 1), we have

zα = (β0 − 1)h+ β0δη. (2.18)
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By setting β0 =
√

1/5, we obtain the Padé [2,2] dispersion relation.

Equation (2.18) is referred as datum invariant version of the Boussinesq equation

(Kennedy et al., 2001), for

h+ zα

h+ δη
= β0 = const.

When










ρ0 = (1 + 2α)2 − 1 = −0.531,

β0 = 0,
(2.19)

we recover the Wei et al. (1995) model. When











ρ0 = β0 − 1 =
√

1/5 − 1 ≈ −0.5528;

β0 =
√

1/5,
(2.20)

we recover the Kennedy et al. (2001) datum invariant model.

2.1.3 Equations of Chen et al. (2003) , O(µ2)

The continuity of mass (COM) equation is

ηt + ∇ · M = 0 (2.21)

where

M = (h+ δη){uα + µ2[
1

2
z2

α − 1

6
(h2 − hδη + δ2η2)]∇(∇ · uα)

+ µ2[zα +
1

2
(h− δη)]∇[∇ · (huα)]} +O(µ4) (2.22)

The equation of motion (EOM) is

uαt + δ(uα · ∇)uα + ∇η + µ2V1 + δµ2V2 + δµ2V3 = O(µ4) (2.23)

where

V1 =
1

2
z2

α∇(∇ · uαt) + zα∇[∇ · (huαt)]] −∇[
1

2
(δη)2∇ · uαt + δη∇ · (huαt)] (2.24)
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V2 = ∇{(zα − δη)(uα · ∇)[∇ · (huα)] +
1

2
(z2

α − δ2η2)(uα · ∇)(∇ · uα)}

+
1

2
∇{[∇ · (huα) + δη∇ · uα]2} (2.25)

and

V3 = (V x
3 , V

y
3 ) = Ω1 × uα (2.26)

V x
3 = −vαω1; V

y
3 = uαω1 (2.27)

Ω1 = (0, 0, ω1) (2.28)

ω1 = zαx{[∇ · (huα)]y + zα(∇ · uα)y}

− zαy{[∇ · (huα)]x − zα(∇ · uα)x} (2.29)

The Chen et al. (2003) equation has an extra term V3 compared to Wei et al.

(1995) due to the inclusion of the second order correction of vertical vorticity evaluated

at z = zα

ω|z=zα
= ω0 + µ2ω1 = (∇× u)|z=zα

(2.30)

where

ω0 = ∇× uα (2.31)

ω1 = {∇ × (u − uα)}|z=zα
(2.32)

u = uα + µ2{(zα − z)∇[∇ · (huα)]

+ (
z2

α

2
− z2

2
)∇(∇ · uα)} (2.33)
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The Chen et al. (2003) equation is also equivalent to the results of Liu (1994),

where the vorticity term is obtained by rearranging the convection term in the free surface

dynamic boundary condition.

2.2 Derivations of Gobbi et al. (2000) Equations and New Equations

In this section, we first re-derive Gobbi et al. (2000) 4-th order equations based on

two reference levels, where the two references are extended to be moving as in Kennedy

et al. (2001), from potential flow theory. Then we derive the same set of equations from

the Euler equations such that the inclusion of vertical vorticity by Chen et al. (2003) is

naturally done since the Euler equation doesn’t assume zero vertical vorticity even though

the horizontal vorticity components are assumed to be zero in the derivation. During

the derivation from Euler equation, we will further extend the momentum equation by

introducing an arbitrary level zc on which the momentum equation can be represented

unlike the previous equations of Wei et al. (1995), Gobbi et al. (2000) and Kennedy et

al. (2001) where the momentum equations are all based on Bernoulli equation of the free

surface or the momentum balance of particles on the free surface. The inclusion of zc

gives an additional free parameter that can aid in obtaining better shoaling and nonlinear

interaction modeling performance of the resulting equations.

In the derivation, we assume the bottom topography (zb(x, y, t)) is not moving

or moving very slowly compared to the water wave motion so that we will neglect time

derivative of zb and still water depth h. In the later chapters for sediment transport, we

will include the motion of bottom into the continuity equation and first order terms in the

momentum equations but not in the high order dispersive terms for simplicity. This is

a reasonable assumption for gravity waves with a time scale much smaller than the mor-

phology change. In some extreme cases such as swash tip of wave run up, the morphology

change can be of the same rate as fluid flow, then the effect of ht should be included.
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2.2.1 Derivation from potential flow theory following Gobbi et al. (2000), O(µ4)

The Gobbi et al. (2000) 4th order Boussinesq equation is derived based on po-

tential flow theory with introduction of two fixed reference levels zα and zβ . Here we

repeat the derivations while further assuming that the two reference levels zα and zβ are

moving according to Kennedy et al. (2001). We start from the following well established

mathematical description of the irrotational flow system:

COM (depth integrated continuity equation)

ηt + ∇ · M = 0, M =
∫ δη

−h
∇φdz (2.34)

Laplace equation for flow potential

φzz + µ2∇2φ = 0; −h ≤ z ≤ δη (2.35)

Bottom Boundary Condition (BBC)

φz + µ2∇h · ∇φ = 0; z = −h (2.36)

Dynamic Free Surface Boundary Condition (DFSBC)

η + φt +
1

2
δ[(∇φ)2 +

1

µ2
(φz)

2] = 0; z = δη (2.37)

Kinematic Free Surface Boundary Condition (KFSBC)

ηt + δ∇φ · ∇η − 1

µ2
φz = 0; z = δη (2.38)

The vertical distribution of flow potential φ(x, y, z, t) can be expressed by a Taylor

expansion with ξ = h+ z being the distance from bottom to z:

φ(x, y, z, t) =
N

∑

n=0

ξnφn(x, y, t). (2.39)
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From BBC, we obtain

φ1 = −µ2G∇h · ∇φ0 (2.40)

where

G =
1

1 + µ2|∇h|2 (2.41)

From Laplace’s equation, we have

(n+ 2)(n+ 1)φn+2 + µ2[(n+ 2)(n+ 1)|∇h|2φn+2 + (n+ 1)∇2hφn+1

+ 2(n+ 1)∇h · ∇φn+1 + ∇2φn] = 0 (n = 0, 1, 2, ...)(2.42)

From the last 3 equations above, we obtain

φ2 = −µ
2

2
G∇2φ0 + µ4[

G2

2
∇2h∇h · ∇φ0 +G∇h · ∇(G∇h · ∇φ0)] +O(µ6) (2.43)

φ3 = µ4[
G2∇2h∇2φ0

6
+

1

3
G∇h · ∇(G∇2φ0) +

1

6
G∇2(G∇h · ∇φ0)] +O(µ2) (2.44)

φ4 =
µ4

24
G∇2(G∇2φ0) +O(µ6) (2.45)

so,

φ = φ0 + φ1ξ + φ2ξ
2 + φ3ξ

3 + φ4ξ
4 + ...

= φ0 − µ2G∇h · ∇φ0ξ −
µ2

2
G∇2φ0ξ

2

+ µ4[
G2

2
∇2h∇h · ∇φ0 +G∇h · ∇(G∇h · ∇φ0)]ξ

2

+ µ4[
G2∇2h∇2φ0

6
+

1

3
G∇h · ∇(G∇2φ0) +

1

6
G∇2(G∇h · ∇φ0)]ξ

3

+ [
µ4

24
G∇2(G∇2φ0) +O(µ6)]ξ4

+ O(µ6). (2.46)

Now we introduce the following representative potential φ̃ based on a weighted average

of flow potential functions on two reference levels zα and zβ

φ̃ = βφα + (1 − β)φβ (2.47)
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where φα, φβ are φ evaluated at zα, zβ respectively.

In Gobbi et al. (2000), the definitions of zα, zβ are fixed levels

zα = {[1
9
− { 8β

567(1 − β)
}1/2 + { 8

567β(1 − β)
}1/2]1/2 − 1}h (2.48)

zβ = {[1
9
− { 8β

567(1 − β)
}1/2]1/2 − 1}h, (2.49)

β ≈ 0.2, (2.50)

but in the derivations here, we let zα and zβ move with time according to Kennedy et al.

(2001). Substituting φα and φβ into φ̃, one obtains

φ̃ = φ0 − µ2(AhG∇h · ∇φ0 +
1

2
Bh2G∇2φ0)

+ µ4{Bh2[
1

2
G2∇2h∇h · ∇φ0 +G∇h · ∇(G∇h · ∇φ0)]

+ Ch3[
1

6
G2∇2h∇2φ0 +

1

3
G∇h · ∇(G∇2φ0) +

1

6
G∇2(G∇h · ∇φ0)]

+ Dh4 1

24
G∇2(G∇2φ0)}

+ O(µ6) (2.51)

where






































A = 1
h
[β(h+ zα) + (1 − β)(h+ zβ)]

B = 1
h2 [β(h+ zα)2 + (1 − β)(h+ zβ)2]

C = 1
h3 [β(h+ zα)3 + (1 − β)(h+ zβ)3]

D = 1
h4 [β(h+ zα)4 + (1 − β)(h+ zβ)4]

(2.52)

Inverting the equation above, we obtain φ0 in terms of φ̃

φ0 = φ̃ + µ2[AhG∇h · ∇φ̃+
1

2
Bh2G∇2φ̃]

+ µ4[AhG∇h · ∇(AhG∇h · ∇φ̃+
1

2
Bh2G∇2φ̃)

+
1

2
Bh2G∇2(AhG∇h · ∇φ̃+

1

2
Bh2G∇2φ̃)]

− µ4{Bh2[
1

2
G2∇2h∇h · ∇φ̃+G∇h · ∇(G∇h · ∇φ̃)]
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+ Ch3[
1

6
G2∇2h∇2φ̃+

1

3
G∇h · ∇(G∇2φ̃) +

1

6
G∇2(G∇h · ∇φ̃)]

+ Dh4 1

24
G∇2(G∇2φ̃)}

+ O(µ6) (2.53)

Substituting into (2.46) gives

φ = φ̃+ µ2[(Ah− ξ)F1 + (Bh2 − ξ2)F2]

+ µ4[(Ah− ξ)F3 + (Bh2 − ξ2)F4 + (Ch3 − ξ3)F5 + (Dh4 − ξ4)F6](2.54)

where


















































































F1 = G∇h · ∇φ̃
F2 = 1

2
G∇2φ̃

F3 = ∇h · ∇(Ah∇h · ∇φ̃) + 1
2
∇h · ∇(Bh2∇2φ̃)

F4 = 1
2
∇2(Ah∇h · ∇φ̃) + 1

4
∇2(Bh2∇2φ̃)

−1
2
∇2h∇h · ∇φ̃−∇h · ∇(∇h · ∇φ̃)

F5 = −1
6
∇2h∇2φ̃− 1

3
∇h · ∇(∇2φ̃) − 1

6
∇2(∇h · ∇φ̃)

F6 = − 1
24
∇2(∇2φ̃)

(2.55)

The horizontal velocity is then given by

u = ∇φ = ∇φ̃

+ µ2[(∇(AhF1) − ξ∇F1 − F1∇h)

+ (∇(Bh2F2) − ξ2∇F2 − 2ξF2∇h)]

+ µ4[(∇(AhF3) − ξ∇F3 − F3∇h)

+ (∇(Bh2F4) − ξ2∇F4 − 2ξF4∇h)

+ (∇(Ch3F5) − ξ3∇F5 − 3ξ2F5∇h)

+ (∇(Dh4F6) − ξ4∇F6 − 4ξ3F6∇h)] (2.56)

The volume flux of fluid per unit width can be calculated by integrating the velocity over

the depth,

M =
∫ δη

−h
∇φdz =

∫ H

0
∇φdξ
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which gives

M = H∇φ̃

+ µ2H{∇(AhF1) −
H

2
∇F1 − F1∇h

+ ∇(Bh2F2) −
H2

3
∇F2 −HF2∇h}

+ µ4 H{∇(AhF3) −
H

2
∇F3 − F3∇h

+ ∇(Bh2F4) −
H2

3
∇F4 −HF4∇h

+ ∇(Ch3F5) −
H3

4
∇F5 −H2F5∇h

+ ∇(Dh4F6) −
H4

5
∇F6 −H3F6∇h} (2.57)

Substituting equation (2.54) into DFSBC, we get the following Bernoulli equation

η + φ̃t +
1

2
δ|∇φ̃|2

+ µ2[(AthF1 + (Ah−H)F1t) + (Bth
2F2 + (Bh2 −H2)F2t)]

+ δµ2[∇φ̃ · {∇((Ah−H)F1) + F1∇δη

+ ∇((Bh2 −H2)F2) + 2F2H∇δη}

+
1

2
(F1 + 2HF2)

2]

+ µ4[(AthF3 + (Ah−H)F3t) + (Bth
2F4 + (Bh2 −H2)F4t)

+ (Cth
3F5 + (Ch3 −H3)F5t + (Dth

4F6 + (Dh4 −H4)F6t)]

+ δµ4[
1

2
|∇((Ah−H)F1) + F1∇δη + ∇((Bh2 −H2)F2) + 2F2H∇δη|2

+ ∇φ̃ · [∇((Ah−H)F3) + F3∇δη + ∇((Bh2 −H2)F4) − 2F4H∇δη

+ ∇((Ch3 −H3)F5) + 3F5H
2∇δη + ∇((Dh4 −H4)F6) − 4F6H

3∇δη]

+ (F1 + 2HF2)(F3 + 2HF4 + 3H2F5 + 4H3F6)}

= O(µ6) (2.58)
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Next, we introduce representative velocity ũ based on reference velocity on the

two reference levels

ũ(x, y, t) = βuα + (1 − β)uβ

= β[∇φ]|z=zα
+ (1 − β)[∇φ]|z=zβ

(2.59)

where

[∇φ]|z=zα
= ∇φ̃

+ µ2[(∇(AhF1) − (h+ zα)∇F1 − F1∇h)

+ (∇(Bh2F2) − (h+ zα)2∇F2 − 2(h+ zα)F2∇h)]

+ µ4[(∇(AhF3) − (h+ zα)∇F3 − F3∇h)

+ (∇(Bh2F4) − (h+ zα)2∇F4 − 2(h+ zα)F4∇h)

+ (∇(Ch3F5) − (h+ zα)3∇F5 − 3(h+ zα)2F5∇h)

+ (∇(Dh4F6) − (h+ zα)4∇F6 − 4(h+ zα)3F6∇h)] (2.60)

[∇φ]|z=zβ
is similar. Thus, we have ũ in terms of φ̃,

ũ = βuα + (1 − β)uβ

= ∇φ̃+ µ2[F1∇(Ah− h) + F2(∇(Bh2) − 2Ah∇h)]

+ µ4[F3∇(Ah− h) + F4(∇(Bh2) − 2Ah∇h)

+ F5(∇(Ch3) − 3Bh2∇h) + F6(∇(Dh4) − 4h3(∇h)]

+ O(µ6). (2.61)

By inverting this equation, we get

∇φ̃ = ũ

− µ2[F21(∇(Ah) −∇h) + F22(∇(Bh2) − 2Ah∇h)]

− µ4[(F41 + F43)(∇(Ah) −∇h) + (F42 + F44)(∇(Bh2) − 2Ah∇h)

+ F45(∇(Ch3) − 3Bh2∇h) + F46(∇(Dh4) − 4Ch3∇h)] (2.62)
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where

F21 = G∇h · ũ (2.63)

F22 =
1

2
G∇ · ũ (2.64)

F41 = ∇h · L (2.65)

F42 =
1

2
∇ · L (2.66)

F43 = ∇h · ∇(Ah∇h · ũ) +
1

2
∇h · ∇(Bh2∇ · ũ) (2.67)

F44 =
1

2
∇2(Ah∇h · ũ) +

1

4
∇2(Bh2∇ · ũ) − 1

2
∇2h∇h · ũ −∇h · ∇(∇h · ũ) (2.68)

F45 = −1

6
∇2h∇ · ũ − 1

3
∇h · ∇(∇ · ũ) − 1

6
∇2(∇h · ũ) (2.69)

F46 = − 1

24
∇2(∇ · ũ) (2.70)

L = −[∇h · ũ(∇(Ah) −∇h) +
1

2
∇ · ũ(∇(Bh2) − 2Ah∇h)] (2.71)

Substituting ∇φ̃ into (2.57), the depth integrated flow rate M becomes

M = Hũ

+ µ2H{L + ∇(AhF21) −
H

2
∇F21 − F21∇h

+ ∇(Bh2F22) −
H2

3
∇F22 −HF22∇h}

− µ4H{L41 + L43 + L42 + L44 + L45 + L46}

+ µ4H{∇(Ah∇h · L) − H

2
∇(∇h · L) − (∇h · L)∇h

+ ∇(Bh2 1

2
∇ · L) − H2

3
∇(

1

2
∇ · L) − H

2
(∇ · L)∇h}

+ µ4H{∇(AhF43) −
H

2
∇F43 − F43∇h

+ ∇(Bh2F44) −
H2

3
∇F44 −HF44∇h

+ ∇(Ch3F45) −
H3

4
∇F45 −H2F45∇h

+ ∇(Dh4F46) −
H4

5
∇F46 −H3F46∇h}

+ O(µ6) (2.72)
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where

L41 = F41A1 ; L42 = F42B1

L43 = F43A1 ; L44 = F44B1

L45 = F45C1 ; L46 = F46D1

A1 = ∇(Ah) −∇h ; B1 = ∇(Bh2) − 2Ah∇h

C1 = ∇(Ch3) − 3Bh2∇h ; D1 = ∇(Dh4) − 4Ch3∇h

L21 = F21A1 ; L22 = F22B1

L = −(L21 + L22)

∇h · L = F41 ; ∇h · L = F42

(2.73)

Simplification leads to

M = H{ũ

+ µ2[(Ah− H

2
)(2∇hF22 + ∇F21) + (Bh2 − H2

3
)∇F22]

+ µ4[(Ah− H

2
)(2∇hF42 + ∇F41 + 2∇hF44 + ∇F43)

+ (Bh2 − H2

2
)(∇F42 + 3∇hF45 + ∇F44)

+ (Ch3 − H3

4
)(4∇hF46 + ∇F45) + (Dh4 − H4

5
)∇F46]}

+ O(µ6) (2.74)

By taking gradient to Bernoulli equation 1(2.58) (i.e. the DFSBC), we obtain

∇η + (∇φ̃)t +
1

2
δ∇|∇φ̃|2

1 Note that this treatment automatically leaves out the vorticity term given by Chen

et al. (2003) and Liu (1994). In Liu (1994), the gradient of the convection term in

DFSBC is written as (∇φ · ∇)∇φ to retain the vorticity term. The vorticity term is

important for simulating nearshore shear waves generated by wave breaking, bottom

friction and lateral mixing.
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+ µ2[∇(AthF1) + ∇((Ah−H)F1t)

+ ∇(Bth
2F2) + ∇((Bh2 −H2)F2t)]

+ δµ2{∇[∇φ̃ · [∇((Ah−H)F1 + F1δη

+ ∇((Bh2 −H2)F2) + 2F2H∇δη]]

+
1

2
∇(F1 + 2HF2)

2}

+ µ4[∇(AthF3 + (Ah−H)F3t) + ∇(Bth
2F4 + (Bh2 −H2)F4t)

+ ∇(Cth
3F5 + (Ch3 −H3)F5t) + ∇(Dth

4F6 + (Dh4 −H4)F6t)]

+
1

2
δµ4∇|∇((Ah−H)F1) + F1∇δη

+ ∇((Bh2 −H2)F2) + 2F2H∇δη|2

+ δµ4∇{∇φ̃ · [∇((Ah−H)F3) + F3∇δη

+ ∇((Bh2 −H2)F4) + 2F4H∇δη

+ ∇((Ch3 −H3)F5) + 3F5H
2∇δη

+ ∇((Dh4 −H4)F6) + 4F6H
3∇δη]}

+ δµ4∇{(F1 + 2HF2)(F3 + 2HF4 + 3H2F5 + 4H3F6)}

= O(µ6) (2.75)

Substitute the expression of ∇φ̃, which is (2.62), into this equation, we have a momentum

equation in terms of ũ physically describing the momentum balance of fluid particles on

the free surface

ũt − µ2[−Lt]

+ µ2[∇(AthF21) + ∇((Ah−H)F21t)

+ ∇(Bth
2F22) + ∇((Bh2 −H2)F22t)]

+ µ4[L41t + L43t + L42t + L44t + L45t + L46t]

− µ4[−∇(Ath∇h · L) −∇((Ah−H)∇h · Lt)

− ∇(Bth
2 1

2
∇ · L) −∇((Bh2 −H2)

1

2
∇ · Lt)]
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+ µ4[∇(AthF43 + (Ah−H)F43t) + ∇(Bth
2F44 + (Bh2 −H2)F44t)

+ ∇(Cth
3F45 + (Ch3 −H3)F45t) + ∇(Dth

4F46 + (Dh4 −H4)F46t)]

= − ∇η − 1

2
δ∇|ũ|2 + δµ2[−∇(ũ · L)]

− δµ2{∇[ũ · [∇((Ah−H)F21) + ∇((Bh2 −H2)F22)

+ F21∇δη + 2HF22∇δη]] +
1

2
∇(F21 + 2HF22)

2}

− δµ4{1

2
∇|L|2

− ∇(ũ · [L41 + L43 + L42 + L44 + L45 + L46])}

− δµ4{∇{ũ · [∇((Ah−H)∇h · L) + ∇h · L∇δη

+ ∇ · ((Bh2 −H2)
1

2
∇ · L) + ∇ · LH∇δη]}

+ ∇{L · [∇((Ah−H)F21 + F21∇δη

+ ∇((Bh2 −H2)F22 + 2HF22∇δη]}

+
1

2
∇{2F21∇h · L + 4H2F22∇ · L

+ 2HF21∇ · L + 4HF22∇h · L}}

− 1

2
δµ4∇|∇((Ah−H)F21) + F21∇δη

+ ∇((Bh2 −H2)F22) + 2HF22∇δη|2

− δµ4∇{ũ · [∇((Ah−H)F43) + F43∇δη

+ ∇((Bh2 −H2)F42) + 2F44H∇δη

+ ∇((Ch3 −H3)F45) + 3F45H
2∇δη

+ ∇((Dh4 −H4)F46) + 4F46H
3∇δη]}

− δµ4∇{(F21 + 2HF22)(F43 + 2HF44 + 3H2F45 + 4H3F46)}

+ O(µ6) (2.76)

By utilizing F42 = 1
2
∇ · L, F41 = ∇h · L, the upper equation can be simplified to

Ut = −∇η − δ

2
∇(|ũ|2) + Γ1 + Γ2 (2.77)
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where

U = ũ

+ µ2[(A− 1)h(2∇hF22 + ∇F21) + (B − 1)h2∇F22]

+ µ4[(A− 1)h(2∇hF42 + ∇F41 + 2∇hF44 + ∇F43)

+ (B − 1)h2(∇F42 + 3∇hF45 + ∇F44)

+ (C − 1)h3(4∇hF46 + ∇F45)

+ (D − 1)h4∇F46] (2.78)

Γ1 = µ2∇[δηF21t + (2hδη + δ2η2)F22t]

+ µ4∇[δη(F41t + F43t) + (2hδη + δ2η2)(F42t + F44t)

+ (3h2δη + 3hδ2η2 + δ3η3)F45t

+ (4h3δη + 6h2δ2η2 + 4hδ3η3 + δ4η4)F46t] (2.79)

Γ2 = −δµ2∇{ũ · [(Ah−H)(∇F21 + 2∇hF22)

+ (Bh2 −H2)∇F22] +
1

2
(F21 + 2HF22)

2}

− δµ4∇{ũ · [(Ah−H)(∇F41 + 2∇hF42 + ∇F43 + 2∇hF44)

+ (Bh2 −H2)(∇F42 + ∇F44 + 3∇hF45)

+ (Ch3 −H3)(∇F45 + 4∇hF46) + (Dh4 −H4)∇F46]

+
1

2
|(Ah−H)(∇F21 + 2∇hF22) + (Bh2 −H2)∇F42|2

+
1

2
[(F21 + 2HF22)(F41 + 2HF42

+ F43 + 2HF44 + 3H2F45 + 4H3F46)]} (2.80)

Mass conservation equation (2.74) and momentum equation (2.77) are the 4th

order Boussinesq equations with multiple moving reference levels.

The second order equation sets are O(µ2)

ηt + ∇ · M = 0 (2.81)
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Ut = −∇η − δ

2
∇(|ũ|2) + µ2Γ1 + δµ2Γ2 (2.82)

M = H{ũ}

+ µ2H{(Ah− H

2
)(2∇hF22 + ∇F21) + (Bh2 − H2

3
)∇F22} (2.83)

U = ũ + µ2[(A− 1)h(2∇hF22 + ∇F21) + (B − 1)h2∇F22] (2.84)

Γ1 = ∇[δηF21t + (2hδη + δ2η2)F22t] (2.85)

Γ2 = −∇{ũ · [(Ah−H)(∇F21 + 2∇hF22)

+ (Bh2 −H2)∇F22] +
1

2
(F21 + 2HF22)

2}. (2.86)

In dimensional form

ηt + ∇ · M = 0 (2.87)

Ut = −g∇η − 1

2
∇(|ũ|2) + Γ1 + Γ2 (2.88)

M = H{ũ}

+ H{(Ah− H

2
)(2∇hF22 + ∇F21) + (Bh2 − H2

3
)∇F22} (2.89)

U = ũ + [(A− 1)h(2∇hF22 + ∇F21) + (B − 1)h2∇F22] (2.90)

Γ1 = ∇[ηF21t + (2hη + η2)F22t] (2.91)

Γ2 = −∇{ũ · [(Ah−H)(∇F21 + 2∇hF22)

+ (Bh2 −H2)∇F22] +
1

2
(F21 + 2HF22)

2} (2.92)

where

F21 = G∇h · ũ, (2.93)

F22 =
1

2
G∇ · ũ, (2.94)

G =
1

1 + |∇h|2 . (2.95)
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When setting β = 1, then

Ah = h+ zα; Bh2 = (h+ zα)2; Ch3 = (h+ zα)3; Dh4 = (h+ zα)4

ũ = ũα

F21 = G∇h · ũ = ∇h · ũa +O(µ4)

F22 =
1

2
∇ · ũa +O(µ4),

and equation (2.87) and equation (2.88) recovers Kennedy et al. (2001) equation (2.11)

and (2.13) and further recovers Wei et al. (1995) equation by setting zα = −0.531h.

These equations do not include the effect of vorticity advection when there are wave

breaking, bottom friction and lateral mixing, so that corrections are needed. Derivations

from the Euler equations will automatically include the vertical vorticity term by Chen et

al. (2003) and Liu (1994), and this is done in a later section. From a pure potential flow

point of view, these equations are correct since no vorticity exists in a potential flow wave

field.

2.2.2 Kinematics of potential theory

It is important for a model to be able to calculate kinematics of the flow field for

engineering concerns and sediment transport. We summarize the kinematics included in

the Boussinesq equations presented above.

(1) Horizontal velocity u(x, y, z, t)

Substituting (2.62) into (2.56), the horizontal velocity can be written as

u = ũ

+ µ2{(Ah− ξ)(∇F21 + 2∇hF22) + (Bh2 − ξ2)∇F22}

+ µ4{(Ah− ξ)(∇F41 + ∇F43 + 2∇hF42 + 2∇hF44)

+ (Bh2 − ξ2)(∇F42 + ∇F44 + 3∇hF45)

+ (Ch3 − ξ3)(∇F45 + 4∇hF46)
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+ (Dh4 − ξ4)∇F46}

+ O(µ6) (2.96)

(2) Vertical velocity w(x, y, z, t)

w(x, y, z, t) = φz

= µ2(−F1 − 2ξF2)

+ µ4(−F3 − 2ξF4 − 3ξ2F5 − 4ξ3F6) (2.97)

where F1, F2, F3, F4, F5, F6 are all in terms of ∇φ̃. Substitute (2.62) into the upper equa-

tion, we have

w(x, y, z, t) = − µ2(F21 + 2ξF22)

− µ4(F41 + F43 + 2ξF42 + 2ξF44 + 3ξ2F45 + 4ξ3F46) (2.98)

(3) Pressure p(x, y, z, t)

The pressure field can be derived from vertical component of Euler momentum

equation

wt + δuwx + δvwy = −pz −
1

δ
(2.99)

i.e.

−pz =
1

δ
+ wt + δu · ∇w (2.100)

Considering (2.96)(2.98), we have

−pz =
1

δ

− µ2[F21t + 2ξF22t + δũ · (∇F21 + 2ξ∇F22 + 2F22∇h)]

− µ4{(F41t + F43t + 2ξF42t + 2ξF44t + 3ξ2F45t + 4ξ3F46t)

+ δũ · (∇F41 + ∇F43 + 2ξ∇F42 + 2ξ∇F44 + 3ξ2∇F45

+ 4ξ3∇F46 + 6ξF45∇h+ 12ξ2F46∇h)
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+ δ(Ah− ξ)(∇F21 + 2∇hF22) · (∇F21 + 2F22∇h)

+ δ2(Ah− ξ)ξ(∇F21 + 2∇hF22) · ∇F22

+ δ(Bh2 − ξ2)∇F22 · (∇F21 + 2∇hF22)

+ δ2ξ(Bh2 − ξ2)∇F22 · ∇F22}

+ O(µ6) (2.101)

After integrating from surface to z, we obtain

p− pa = η − z

δ

− µ2{(H − ξ)F21t + (H2ξ2)F22t

+ δũ · [∇F21(H − ξ) + ∇F22(H
2 − ξ2) + 2F22∇h(H − ξ)]}

− µ4{(F41t + F43t)(H − ξ) + (F42t + F44t)(H
2 − ξ2)

+ 2(H − ξ)(F42 + F44)∇h

+ F45t(H
3 − ξ3) + F46t(H

4 − ξ4)

+ δũ · [(H − ξ)(∇F41 + ∇F43)

+ (H2 − ξ2)(∇F42 + ∇F44)

+ (H3 − ξ3)∇F45 + (H4 − ξ4)∇F46

+ 3(H2 − ξ2)F45∇h+ 4(H3 − ξ3)F46∇h]

+ δ[Ah(H − ξ) − (H2 − ξ2)

2
](∇F21 + 2∇hF22)

· (∇F21 + 2F22∇h)

+ δ[Ah(H2 − ξ2) +Bh2(H − ξ) − (H3 − ξ3)]∇F22

· (∇F21 + 2∇hF22)

+ δ[Bh2(H2 − ξ2) +
1

2
(H4 − ξ4)]∇F22 · ∇F22}

+ O(µ6) (2.102)

where pa is the atmospheric pressure on the surface.
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Briefly, for a second order approximation,

u = ũ + µ2{(Ah− ξ)(∇F21 + 2∇hF22) + (Bh2 − ξ2)∇F22} (2.103)

w(x, y, z, t) = −µ2(F21 + 2ξF22) (2.104)

p = pa + η − z

δ

− µ2{(δη − z)F21t + (H2 − ξ2)F22t

+ δũ · [∇F21(δη − z) + ∇F22(H
2 − ξ2) + 2F22∇h(δη − z)]} (2.105)

In dimensional form, we have

u = ũ + {(Ah− ξ)(∇F21 + 2∇hF22) + (Bh2 − ξ2)∇F22} (2.106)

w(x, y, z, t) = −(F21 + 2ξF22) (2.107)

p = pa + ρg(η − z)

− ρ{(η − z)F21t + (H2 − ξ2)F22t

+ ũ · [∇F21(η − z) + ∇F22(H
2 − ξ2) + 2F22∇h(η − z)]} (2.108)

(4) Flux per unit width

The depth integrated flux per unit width is expressed by

M =
∫ δη

−h
udz ≡ (P,Q), (2.109)

where P is flux per unit width in the x direction and Q is flux per unit width in the y

direction.

(5) Wave averaged current field

Wave averaged and depth averaged current is calculated by

U =
M

h+ δη
≡ (U, V ), (2.110)

where the () denotes time average.
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(6) Potential vorticity

Potential vorticity is defined by

q =
∇× M

h+δη

h+ δη
(2.111)

(7) Set up and set down

The wave set up and set down is simply the time averaged free surface elevation

η =
1

T

∫ t+T

t
ηdt, (2.112)

where T is the averaging time period.

2.2.3 Definition of reference levels zα, zβ

The definition of zα, zβ in this research is quite general such that it can be both

fixed or moving to recover all equations included in FUNWAVE1.0.

zα = ρ1h+ β1δη (2.113)

zβ = ρ2h+ β2δη (2.114)

ũ = βuα + (1 − β)uβ (2.115)

φ̃ = βφα + (1 − β)φβ (2.116)

The optimization of ρ1, β1, ρ2, β2, β needs further investigation. In Gobbi et al. (2000),

zα, zβ, β are defined by (2.48) to (2.50) which are fixed reference levels with β1 = β2 = 0.

2.2.4 Derivations from Euler equation with vertical vorticity retained O(µ2)

Boussinesq equations can be also derived from Euler equation as shown in Nwogu

(1993). The advantage of the derivation from Euler equation is that it gives us another

perspective based on the primitive equations instead of equations of a derived field such

as the flow potential. Also, the assumption of vanishing vertical vorticity inherently con-

tained in potential theory can be released since here we can only use vanishing horizontal
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vorticity components when doing depth integration. Chen et al. (2003) extended Wei et

al. (1995) by retaining vertical vorticity that enables the derived Boussinesq equations

to simulate production, convection and mixing of eddies in the horizontal plane. Here

we re-derive the equations of the previous section from Euler equations by showing that

kinematics are exactly same. The vertical vorticity is retained as Chen et al. (2003), plus

a new set of equations resulted from momentum balance of fluid particles on an arbitrary

and moving zc level instead of the previous equations from potential theory which are

about momentum balance of fluid particles on free surface only.

2.2.4.1 Governing equations and assumptions

The governing equations from Eulerian point of view for inviscid and incompress-

ible flow are

(1) COM

∇ · u + wz = ux + vy + wz = 0 (2.117)

(2) EOM

x− direction : ut + uux + vuy + wuz = −1

ρ
px (2.118)

y − direction : vt + uvx + vvy + wvz = −1

ρ
py (2.119)

z − direction : wt + uwx + vwy + wwz = −1

ρ
pz − g (2.120)

The non-dimensional forms of the above equations are written as

(1) COM

µ2∇ · u + wz = µ2ux + µ2vy + wz = 0 (2.121)

(2) EOM

Du

Dt
+ ∇p = 0 (2.122)

Dw

Dt
+ pz + 1/δ = 0 (2.123)
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where

D

Dt
=

∂

∂t
+ δ(u · ∇) +

δ

µ2
w
∂

∂z
(2.124)

u = (u, v); ∇ = (
∂

∂x
,
∂

∂y
) (2.125)

The boundary conditions on the bottom and the free surface are

(1) KFSBC

µ2∂η

∂t
+ δµ2u · ∇η − w = 0; z = δη (2.126)

(2) DFSBC

p = pa = 0; z = δη (2.127)

(3) BBC

µ2u · ∇h+ w = 0; z = −h (2.128)

Horizontal vorticity components are assumed to be zero for the convenience of integration

in the vertical direction, leading to a non-horizontal-vorticity condition:

∂u

∂z
−∇w = 0; −h ≤ z ≤ δη. (2.129)

2.2.4.2 Consistency of kinematics between Euler theory and potential theory

Here, we show that the kinematic flow structure from the Euler equation and po-

tential theory are exactly the same when the non-horizontal-vorticity assumption is ap-

plied.

The COM integrated from z = −h to z gives

∫ z

−h
µ2∇ · udz +

∫ z

−h

∂w

∂z
dz = 0 (2.130)
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Utilizing Leibniz’s Rule, this equation becomes

µ2∇ ·
∫ z

−h
udz + w|z − [µ2(u · ∇h)|−h + w|−h] = 0 (2.131)

The square bracket is BBC (2.128), then this equation is reduced to

w(x, y, z, t) = −µ2∇ ·
∫ z

−h
udz (2.132)

We can introduce a Taylor expansion of u at z = −h

u = ub +
∂u

∂z
|z=−h(h+ z) +

∂2u

∂z2
|z=−h

(h+ z)2

2
+
∂3u

∂z3
|z=−h

(h+ z)3

6
+ ... (2.133)

where ub is velocity at bottom z = −h.

In order to express (2.133) in terms of ub , the terms ∂u
∂z
|−h and ∂2u

∂z2 |−h can be

obtained from the non-horizontal-vorticity condition (2.129).

∂u

∂z
|−h = ∇w|−h

= −µ2{∇[∇ ·
∫ z

−h
udz]}|z=−h

= −µ2{∇[
∫ z

−h
∇ · udz + u · ∇h]}|z=−h

= −µ2{
∫ z

−h
∇(∇ · u)dz + (∇ · u)z=−h∇h+ ∇(ub · ∇h)}|z=−h

= −µ2[(∇ · u)|z=−h∇h+ ∇(ub · ∇h)] +O(µ4) (2.134)

Here, in order to calculate (∇ · u)|z=−h in terms of ub, we need ∇ · u. By integrating the

no-horizontal-vorticity condition (2.129) from −h to z , we have

u =
∫ z

−h
∇wdz + ub. (2.135)

So,

∇ · u = ∇ ·
∫ z

−h
∇wdz −∇ · ub

=
∫ z

−h
∇2wdz + (∇w)|z=−h∇h+ ∇ · ub (2.136)
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and

(∇ · u)|z=−h =
∫ −h

−h
∇2wdz + (∇w)|z=−h · ∇h+ ∇ · ub

= (∇w)|z=−h · ∇h+ ∇ · ub, (2.137)

where (∇w)|z=−h is again (2.134). Substituting (2.134) into the upper equation, it be-

comes

(∇ · u)|z=−h = −µ2[(∇ · u)|z=−h∇h+ ∇(ub · ∇h)] · ∇h+ ∇ · ub. (2.138)

The equation (2.138) is now an iterative formula for (∇ · u)|−h. By iterating it once, we

have

(∇ · u)|z=−h = −µ2[∇ · ub∇h+ ∇(ub · ∇h)]∇h+ ∇ · ub +O(µ4) (2.139)

Substitution of (2.139) into (2.134) yields

∂u

∂z
|−h = (∇w)|−h

= −µ2[∇ · ub∇h+ ∇(ub · ∇h)] +O(µ4) (2.140)

Substituting (2.133) into (2.132) and utilizing (2.140) and (2.138),

w(x, y, z, t) = −µ2∇ · [(h+ z)ub]

+ µ4∇ · {(h+ z)2

2
[∇(ub · ∇h) + ∇ · ub · ∇h]}

− µ2∇ · [ (h+ z)3

6

∂2u

∂z2
|−h]

+ O(µ6) (2.141)

In the upper equation, ∂2u
∂z2 |−h is unknown. However, we can use it to obtain a second

order expression for u. Substituting (2.141) into (2.135), we obtain

u = ub − µ2(h+ z)∇[∇ · (hub)] − µ2(
z2

2
− h2

2
)∇(∇ · ub) +O(µ4) (2.142)
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Equation (2.142) is the same as Nwogu (1993). Then, we have

∂2u

∂z2
|−h = −µ2∇(∇ · ub) +O(µ4) (2.143)

Finally, by substituting (2.143) into (2.141), we obtain the expression for w(x, y, z, t)

w = − µ2∇ · [(h+ z)ub]

+ µ4∇ · {(h+ z)2

2
[∇(ub · ∇h) + ∇ · ub∇h]}

+ µ4∇ · {(h+ z)3

6
∇(∇ · ub)}

+ O(µ6) (2.144)

The equations (2.142) and (2.144) give kinematics in terms of bottom velocity ub.

Now we can re-express them into terms of ũ. Let uα = (u)|z=zα
, uβ = (u)|z=zβ

, from

(2.142), we obtain

uα = ub − µ2(h+ zα)∇[∇ · (hub)] − µ2(
z2

α

2
− h2

2
)∇(∇ · ub). (2.145)

Similarly,

uβ = ub − µ2(h+ zβ)∇[∇ · (hub)] − µ2(
z2

β

2
− h2

2
)∇(∇ · ub). (2.146)

Let

ũ = βuα + (1 − β)uβ (2.147)

Substituting (2.145), (2.146) into (2.147), we have

ũ = ub − µ2Ah∇[∇ · (hub)] − µ2(
B

2
− A)h2∇(∇ · ub) +O(µ4). (2.148)

Equation (2.148) can be inverted to get

ub = ũ + µ2Ah∇[∇ · (hũ)] + µ2B − 2A

2
h2∇(∇ · ũ) +O(µ4). (2.149)

Substituting (2.149) into (2.142) and (2.144), we immediately have

u = ũ+µ2(Ah− ξ)∇[∇· (hũ)]+µ2(
B − 2A

2
h2 − ξ2

2
+hξ)∇(∇· ũ)+O(µ4) (2.150)
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and

w(x, y, z, t) = −µ2∇ · (ξũ) +O(µ4) (2.151)

where ξ = (h + z), and A, B are defined as (2.52). It is easy to prove that (2.150)

and (2.151) are the same as (2.103) and (2.98). Therefore the kinematics from Euler

theory and potential theory are identical and the same conclusion applies to the pressure

distribution (2.105).

2.2.4.3 Boussinesq equation with vertical vorticity retained

2.2.4.3.1 Continuity equation (COM)

Integration of COM (2.121) from −h to δη gives

∫ δη

−h
µ2∇ · udz +

∫ δη

−h
µ2∂w

∂z
dz = 0. (2.152)

Utilizing Leibniz’s rule while considering BBC (2.128) and KFSBC (2.126), it is then

∂η

∂t
+ ∇ ·

∫ δη

−h
udz = 0. (2.153)

This is the same as (2.34). Because u is the same as potential theory, the continuity

equation is finally the same as potential theory too.

2.2.4.3.2 Momentum equation evaluated at z = δη

Integrating (2.123) from z to δη gives

∫ δη

z

∂p

∂z
dz = −

∫ δη

z

Dw

Dt
dz −

∫ δη

z

1

δ
dz (2.154)

or

p|δη − p(x, y, z, t) = −
∫ δη

z

Dw

Dt
dz − δη − z

δ
(2.155)

Consider DFSBC (2.127) which is p|δη = 0, and taking horizontal gradient to the upper

equation gives

∇p = ∇
∫ δη

z

Dw

Dt
dz + ∇η

=
∫ δη

z
∇[
Dw

Dt
]dz +

Dw

Dt
|z=δηδ∇η + ∇η (2.156)
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Substituting (2.156) into (2.122) gives

Du

Dt
+

∫ δη

z
∇[
Dw

Dt
]dz + ∇η[δDw

Dt
|z=δη + 1] = 0. (2.157)

This is the momentum equation valid for any z level.

The derivation of momentum equation (2.77) is from DFSBC. Now, we set z = δη

in (2.157) for the purpose of consistency. In (2.157) , we evaluate the three terms one by

one.

i) Du
Dt

Du

Dt
=
∂u

∂t
+ δ(u · ∇)u +

δ

µ2
w
∂u

∂z
(2.158)

where ∂u
∂t

can be obtained from(2.103)

∂u

∂t
= ũt

+ µ2{(Ah− ξ)(∇F21 + 2∇hF22) + (Bh2 − ξ2)∇F22}t

= ũt

+ µ2{[Ah(∇F21 + 2∇hF22)t] − ξ(∇F21 + 2∇hF22)t

+ (Bh2∇F22)t − ξ2(∇F22)t}. (2.159)

Set ξ = h+ δη, then

∂u

∂t
|δη = {ũ

+ µ2[(A− 1)h(∇F21 + 2∇hF22) + (B − 1)h2∇F22]}t

− µ2[δη(∇F21t + 2∇hF22t) + (δ2η2 + 2hδη)∇F22t]

= Ut

− µ2[δη(∇F21t + 2∇hF22t) + (δ2η2 + 2hδη)∇F22t] (2.160)

where

U = ũ + µ2[(A− 1)h(∇F21 + 2∇hF22) + (B − 1)h2∇F22]

+ O(µ4) (2.161)
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is the same as (2.84).

The second term in (2.158) is δ(u · ∇)u. From (2.103), we have

δ(u · ∇)u = δ(ũ · ∇)ũ

+ δµ2(ũ · ∇)[(Ah− ξ)(∇F21

+ 2∇hF22) + (Bh2 − ξ2)∇F22]

+ δµ2([(Ah− ξ)(∇F21 + 2∇hF22) + (Bh2 − ξ2)∇F22] · ∇)ũ

+ O(δµ4)

= δ(ũ · ∇)ũ

+ δµ2(ũ · ∇[(Ah− (H + (z − δη)))(∇F21 + 2∇hF22)

+ (Bh2 − (H + (z − δη)2))∇F22]

+ δµ2{[(Ah− (H + (z − δη)))(∇F21 + 2∇hF22)

+ (Bh2 − (H + (z − δη)2))∇F22] · ∇}ũ (2.162)

By setting z = δη , the upper equation gives

δ(u · ∇)u|δη = δ(ũ · ∇)ũ + δµ2(ũ · ∇)ũ1 + δµ2(ũ1 · ∇)ũ

+ δµ2ũ · ∇η(∇F21 + 2∇hF22 + 2H∇F22) (2.163)

where

ũ1 = (Ah−H)(∇F21 + 2∇hF22) + (Bh2 −H2)∇F22 (2.164)

ũ1 is the second order (O(µ2)) part of u at z = δη ( See equation(2.103)).

The third term in (2.158) is δ
µ2w

∂u
∂z

. Substitue (2.103)(2.104) into it, then

δ

µ2
w
∂u

∂z
= δµ2{(F21 + 2ξF22)(∇F21 + 2∇hF22 + 2ξ∇F22)} +O(µ4) (2.165)

By setting ξ = h+ δη = H , it gives

δ

µ2
w
∂u

∂z
= δµ2{(F21 + 2HF22)(∇F21 + 2∇hF22 + 2H∇F22)} +O(µ4) (2.166)
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ii)
∫ δη
z ∇[Dw

Dt
]dz

This term is zero when setting z = δη, i.e.

∫ δη

z
∇[
Dw

Dt
]dz|z=δη = 0 (2.167)

iii)δDw
Dt

|z=δη

δ
Dw

Dt
=
∂w

∂t
+ δ(u · ∇)w +

δ

η2
w
∂w

∂z
(2.168)

where the first term is calculated by (2.104)

∂w

∂t
= −µ2(F21t + 2F22tξ). (2.169)

Substitute ξ = H into it, then

∂w

∂t
|z=δη = −µ2(F21t + 2HF22t). (2.170)

The second term is calculated by (2.103) and (2.104)

δ(u · ∇)w = − δµ2(ũ · ∇)F21 − δµ22(ũ · ∇h)F22

− δµ22ξũ · ∇F22 +O(µ4) (2.171)

Setting ξ = H gives

δ(u · ∇)w = −δµ2ũ · (∇F21 + 2∇hF22 + 2H∇F22) +O(µ4). (2.172)

The third term can also be obtained from (2.104)

δ

µ2
w
∂w

∂z
|z=δη = δµ2(F21 + 2HF22)2F22 +O(µ4) (2.173)

Substitute i) ii) and iii) into (2.157), utilizing the following identities,

(ũ · ∇)ũ1 + (ũ1 · ∇)ũ = ∇(ũ · ũ1) + (∇× ũ1) × ũ + (∇× ũ) × ũ1

(ũ · ∇)ũ =
1

2
∇(ũ · ũ) + (∇× ũ) × ũ,

43



we obtain

Ut = −∇η − 1

2
δ∇(ũ · ũ) + µ2Γ1 + δµ2Γ2 + Γ3 (2.174)

where

Γ1 = ∇[δηF21t + (2hδη + δ2η2)F22t] (2.175)

Γ2 = −∇{ũ · ũ1 +
1

2
(F21 + 2HF22)

2} (2.176)

Γ3 = − [δ(∇× ũ) × ũ + δµ2(∇× ũ1) × ũ + δµ2(∇× ũ) × ũ1

+ δµ2ũ · ∇δη(∇F21 + 2∇hF22 + 2H∇F22)

− δµ2∇δηũ · (∇F21 + 2∇hF22 + 2H∇F22)] (2.177)

Γ1 , Γ2 are the same as results from potential theory (2.85) and (2.86). Γ3 can be

proved to be −δ(∇× u)|z=δη × u|z=δη, i. e.

Γ3 = −δ(∇× u)|z=δη × u|z=δη

= −δΩ|z=δη × u|z=δη (2.178)

U is the horizontal velocity u at still water level z = 0; Γ3 is contribution due to

vertical vorticity on the surface.

2.2.4.3.3 Momentum equation evaluated at arbitrary level z = zc

Equation (2.157) can also be evaluated at an arbitrary level

z = zc(x, y, t) ≡ ρch(x, y) + βcδη(x, y, t) (2.179)

and an optimized zc may lead to better modeling results.

In this case,

Γ1 = ∇[zcF21t + (2hzc + z2
c )F22t]

+ ∇[(δη − zc)(F21t + (δη + zc)F22t)]

+ ∇[2h(δη − zc)F22t]

= ∇[δη2F23t + δ2η2F22t] (2.180)

44



Γ2 = − ∇{ũ · ũ1c +
1

2
(F21 + 2HF22)

2

+
(z2

c − δ2η2)

2
(ũ · ∇)(2F22)

+ (zc − δη)(ũ · ∇)(2F23)}

(2.181)

Γ3 = −[δ(∇× ũ) × ũ + δµ2(∇× ũ1c) × ũ + δµ2(∇× ũ) × ũ1c

+ δµ2∇zc · ũ(∇F21 + 2∇hF22 + 2Hc∇F22)

− δµ2∇zcũ · (∇F21 + 2∇hF22 + 2Hc∇F22)]

= −δ(∇× u)|z=zc
× uz=zc

= −δΩ|z=zc
× uz=zc

(2.182)

where

Hc = h+ zc (2.183)

ũ1c = (Ah−Hc)(∇F21 + 2∇hF22) + (Bh2 −H2
c )∇F22 (2.184)

It is seen from (2.103) that ũ1c is the second order part of velocity at z = zc. The level zc

is free to choose, such as



























zc = δη on the surface

zc = 0 on the still water level

zc = −h on the bottom

The optimization of zc to get better dispersion and nonlinear properties is left for further

investigation.

The result that we have in (2.182), Γ3 = −δ(∇× u)|z=zc
× uz=zc

, is very natural,

because the horizontal Euler equation

∂u

∂t
+ δ(u · ∇)u +

δ

µ2
w
∂u

∂z
= −∇p
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can always be written as

∂u

∂t
+
δ

2
∇(u · u) + δ(∇× u) × u +

δ

µ2
w
∂u

∂z
= −∇p

and the above equation is valid at any vertical level. One may ask, given that the kine-

matics between Euler theory (with assumption of zero-horizontal-vorticity) and potential

theory are identical, why one has the vertical vorticity retained while the other does not?

The answer is that only non-horizontal vorticity condition is used to derive the kinemat-

ics. But in potential theory, the vertical vorticity is assumed to be zero by introducing

flow potential φ. If we rewrite the DFSBC (2.37) as

η + φt +
1

2
δ[∇φ · ∇φ+

1

µ2
(φz)

2] = 0; z = δη (2.185)

where ∇φ is horizontal velocity u = ũ + ũ1, then as we take a gradient of this equation

to obtain the momentum equation in the derivations from potential theory, we can see that

1

2
∇(∇φ · ∇φ) =

1

2
∇(u · u) = (u · ∇)u − (∇× u) × u. (2.186)

The last term gives the vorticity term accordingly when ∇× u 6= 0, yet potential theory

assumes ∇ × u = 0, which is why Wei et al. (1995), Kennedy et al. (2001) and Gobbi

et al. (2000) did not have the vertical vorticity term pointed out by Chen et al. (2003)

and Liu (1994). Since here u is only horizontal velocity, doing so doesn’t harm the no-

horizontal-vorticity condition in the potential flow, but the no-vertical-vorticity condition

is released.

2.3 Derivation of Boussinesq Equation Incorporating Undertow

Boussinesq equations can provide instantaneous wave and current information for

sediment transport models, many of which rely on detailed predictions of bottom shear

stress. This gives us an opportunity to examine existing sediment transport rate formulas

based on “quasi-steady” assumption or further examine new formulas being developed.

The Boussinesq equation can give correct free stream velocity skewness estimate

when there is no plunging wave breaking (Long and Kirby, 2003; Long et al., 2004).
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When in the surfzone, wave introduced undertow will contribute mainly to offshore trans-

port of bedload and suspended load sediments. Hence, it is important to have undertow

included for phase resolving sediment transport models to predict offshore transport cor-

rectly. Existing undertow models are mostly based on time averaged approaches (Stive

and De Vriend, 1994; Stive and Wind, 1986; Svendsen and Putrevu, 1990; Cox and

Kobayashi, 1997; Kuriyama and Nakatsukasa, 2000) and also rely on assumptions of bot-

tom friction/stress which is what we are trying to predict and use in the sediment transport

calculation.

In this research, we try to predict instantaneous free stream velocity with undertow

automatically included. The basic idea is to use roller modeling for description of breakers

and include the impact of the roller to the mass conservation and momentum equations

for the underlying water column.

The alpha-level representation of velocity uα by Nwogu (1993) is used for vertical

distribution of velocity. In contrast to Nwogu (1993) and the previous sections, here the

momentum equation of water particles is integrated from bottom to free surface, while,

in Nwogu (1993) and FUNWAVE version 1.0, the momentum equation only stands for

one particular water level with pressure integrated from free surface to that level. In

comparison to Nwogu (1993), the new equations arrived here are still in terms of uα, but

more compact and easier to solve numerically.

In summary, the new equation is: 1) using same vertical structure of irrotational

flow field; 2) written in terms of uα; 3) more compact looking than previous equations;

4) fully nonlinear; 5) undertow included.

2.3.1 Derivation from shallow water equation

The key idea of this research is to split the fluid velocity into wave component

(irrotational in the vertical plane) and rotational component. Then we elaborate the idea

using Boussinesq theory for the irrotational component. For the purpose of illustration,

we present the derivation for shallow water system since the fact that entire surfzone and
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roller

Figure 2.2: Spilling breaker roller

undertow system is a shallow water system. For the sake of simplicity, we derive the

equations for a 1-D constant water depth problem. Figure 2.2 shows a schematic picture

of spilling breaker with a conceptual roller (Schäffer et al., 1993). Figure 2.3 shows the

split of horizontal velocity.

Let

1. zb = −h : bed level

2. η : free surface elevation

3. r : thickness of roller, r ≥ 0

4. u(x, z, t) : fluid velocity

5. uw(x, z, t) : wave component including undertow

6. ur(x, z, t) : component due to roller
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Figure 2.3: Horizontal velocity split

For shallow water system, assume uw = uw(x, t), i.e. wave current velocity is uniform in

z direction. Figure 2.3 shows the uw and ur (Schäffer et al., 1993) decomposition which

can be written as

u(x, z, t) = uw(x, z, t) + ur(x, z, t) (2.187)

with (for shallow water)

uw(x, z, t) = uw(x, t) (2.188)

and

ur =











C − uw η − r ≤ z ≤ η

0 − h ≤ z ≤ η − r

where C is the wave phase speed.

We make the following assumptions: 1) vertical velocity w is the same as in irro-

tational flow theory; 2) pressure is hydrostatic.
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The 2-D vertical (2DV) governing equations for the fluid are given by the conti-

nuity equation

∂u

∂x
+
∂w

∂z
= 0 (2.189)

and the Euler equation of motion

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.190)

0 = −1

ρ

∂p

∂z
− g (2.191)

where in (2.191), w is assumed to be of 2nd order and neglected. It’s obvious from (2.191)

that

p = ρg(η − z), (2.192)

where p = 0 at free surface is utilized. From (2.192), we have

∂p

∂x
= ρg

∂η

∂x
(2.193)

and (2.190) becomes

∂u

∂t
+ u

∂u

∂x
+ w

∂w

∂z
= −g ∂η

∂x
(2.194)

with the following boundary conditions (for horizontal bottom problem)

w = 0 at z = −h (2.195)

∂η

∂t
+ u

∂η

∂x
= w at z = η (2.196)

p = 0 at z = η (2.197)

Integrate (2.189) from bottom to free surface and utilizing the boundary conditions to

obtain the following continuity equation

∂η

∂t
+

∂

∂x

∫ η

−h
udz (2.198)

Considering u = uw + ur, we get

∂η

∂t
+
∂Mw

∂x
+
∂Mr

∂x
= 0, (2.199)
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where

Mw =
∫ η

−h
uwdz = Huw, (2.200)

Mr =
∫ η

−h
urdz = (C − uw)r = urr. (2.201)

Here, Mw is the volume flux due to wave, Mr is volume flux due to the roller.

Next, we look for integrated horizontal momentum equation. (2.194) plus ((2.189)

multiplied by u gives

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −g ∂η

∂x
. (2.202)

Integrate this equation from bottom to free surface to obtain

∂

∂t

∫ η

−h
udz +

∂

∂x

∫ η

−h
u2dz = −g(h+ η)

∂η

∂x
, (2.203)

where boundary conditions have been used and

∫ η

−h
udz = Mw +Mr (2.204)

∫ η

−h
u2dz =

∫ η

−h
(uw + ur)

2dz = uw
2H + ur

2r + 2uwurr. (2.205)

Equation (2.203) becomes

∂Mw

∂t
+
∂Mr

∂x
+
∂uw

2H

∂x
+
∂ur

2r

∂x
+
∂2uwurr

∂x
= −gH ∂η

∂x
(2.206)

Since Mw = Huw, Mr = urr, the upper equation can be written as

∂Huw

∂t
+
∂Huw

2

∂x
+ gH

∂η

∂x
+
∂Mr

∂t
+
∂(Mr)

2/r

∂x
+
∂2uwMr

∂x
= 0 (2.207)

We see that (2.207) has contribution due to the roller, where ∂Mr

∂t
is inertia of the roller;

∂Mr
2/r

∂x
is the convection of the roller by itself ∂uwMr

∂x
is the advection of the roller by wave

current velocity uw

Equation (2.207) can be also rewritten as

∂uw

∂t
+ uw

∂uw

∂x
+ g

∂η

∂x

+
1

H
(
∂Mr

∂t
+
∂Mr

2/r

∂x
+Mr

∂uw

∂x
)

= 0 (2.208)
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We see that (2.208) is an equation in terms of the depth averaged irrotational velocity uw.

uw should contain undertow information when the roller is present. In equation 2.208,

division by H = η + h will introduce difficulty near shoreline. In the next section, we

will derive the momentum equation from Boussinesq theory and it will be seen that it is

better to keep the resulting equation in the form of (2.207) so that the equation is more

compact.

2.3.2 Derivation from Boussinesq theory

In the previous section, the shallow water equation is improved to incorporate

undertow. Now we proceed to improve our Boussinesq model by incorporating undertow

as well. Before we start, we emphasize the assumptions here:

(1) Fluid velocity

u = uw + ur (2.209)

w = ww (2.210)

i.e., horizontal velocity is split into an irrotational component uw and the roller compo-

nent ur, vertical velocity is assumed to have only an irrotational component meaning that

vertical component of rotational flow is assumed to be small relative to irrotational flow.

(2) Hydrodynamic pressure p(x, y, z, t) is only determined by vertical momentum equa-

tion when ur = 0, i.e., assume that ur does not affect pressure.

(3) Irrotational velocity uw can be expressed as a 2nd order polynomial function of z in

terms of representative levels: alpha level uwα and beta level uwβ , where

uwα = uw(x, t, z = zα) (2.211)

uwβ = uw(x, t, z = zβ) (2.212)

with

zα = ρ1h+ β1η (2.213)

zβ = ρ2h+ β2η (2.214)
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and define

ũ ≡ βuwα + (1 − β)uwβ (2.215)

When β = 1, equation (2.215) recovers Nwogu (1993) representation. The FUN-

WAVE2D2.0 developed here use (2.215) as dependent velocity. Kennedy et al. (2001)

uses (2.213) with β1 6= 0 to achieve datum invariant version of Boussinesq equation as a

special case as is also pointed out in previous sections.

We start derivation from Euler equation in 3-D. The dimensional form of the con-

servation of mass (COM) equation is

∇ · u + wz =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.216)

The dimensional form of the equations of motion (EOM) are

x-direction:
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.217)

y-direction:
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
(2.218)

z-direction:
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (2.219)

In dimensionless form, we have

COM

µ2∂u

∂x
+ µ2∂v

∂y
+
∂w

∂z
= 0 (2.220)

and EOM

Du

Dt
+ ∇p = 0 (2.221)

Dw

Dt
+
∂p

∂z
+

1

δ
= 0 (2.222)

where

D

Dt
=

∂

∂t
+ δ(u · ∇) +

δ

µ2
w
∂

∂z
(2.223)

u = (u, v), ∇ = (
∂

∂x
,
∂

∂y
) (2.224)
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Boundary conditions are

µ2∂η

∂t
+ δµ2u · ∇η − w = 0; z = δη (2.225)

p = pa = 0; z = δη (2.226)

µ2u · ∇h+ w = 0; z = −h (2.227)

The irrotation condition for wave velocity is given by

∂uw

∂z
−∇ww = 0; h ≤ z ≤ δη (2.228)

Following the derivation in the previous sections, we can express the velocity (uw, ww)

in terms of ũ as

uw = ũ + µ2(Ah− ξ)∇[∇ · (hũ)]

+ µ2(
B − 2A

2
h2 − ξ2

2
+ hξ)∇(∇ · ũ) +O(µ4) (2.229)

ww(x, y, z, t) = −µ2∇ · (ξũ) (2.230)

where

ξ = h+ z (2.231)

is distance above the bed.

A =
1

h
[β(h+ zα) + (1 − β)(h+ zβ)] (2.232)

B =
1

h2
[β(h+ zα)2 + (1 − β)(h+ zβ)2] (2.233)

The roller component of velocity is given by

ur = C − uw, δη − r ≤ z ≤ δη (2.234)

wr = 0 (2.235)

C ≈
√

ghn (2.236)
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where n is the wave direction unit vector n = (n1, n2).

(1) Continuity Equation

Integrate COM from bottom to free surface to obtain

∂η

∂t
+ ∇ · Mw + ∇ · Mr = 0 (2.237)

where Mw is volume flux due to irrotational flow uw and also defined as

Mw ≡
∫ δη

−h
uwdz (2.238)

Mw = Hũ + µ2H{2(Ah− H

2
)∇F23 + (Bh2 − H2

3
− 2Ah2 + hH)∇F22} (2.239)

Mr ≡
∫ δη

−h
urdz (2.240)

=
∫ δη−r

−h
0dz +

∫ δη

δη−r
(C − uw)dz

= (C − ũ)r +O(µ2r) (2.241)

where r is assumed to be less than δ, i.e., a roller only occurs within a fractional layer

of the thickness of a wave front. We see that (2.239) is exactly the same as the previous

Boussinesq equations.

(2) Momentum Equation

Derivation of momentum equation here is a bit different than the previous sections.

In Nwogu (1993) and Wei et al. (1995), the momentum equation is basically (2.221)

evaluated at z = δη. In previous sections, we have the Boussinesq momentum equation

being (2.221) evaluated at zc = ρch+ βcδη level. Here, in order to take account of roller

momentum balance we need to integrate (2.221) from the bottom z = −h to the free

surface z = δη. We’ll see that this approach actually yields an equation that is more

compact.

Integration of (2.221) from z = −h to z = δη and using bottom and surface BC,

we have

∂

∂t

∫ δη

−h
udz + δ∇ ·

∫ δη

−h
uudz + δ∇

∫ δη

−h
pdz − p|z=−h∇h = 0 (2.242)
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This equation (2.242) has the same assumptions in the Euler equation. The physical mean-

ing of each term is apparent: 1) the first is the inertia of the water column; 2) the second

term is the convection of the water column; 3) the third term is the pressure gradient of

the water column; 4) the fourth term is the bottom pressure projected onto horizontal

direction due to the bottom slope.

Integrating the vertical momentum equation (2.222) from z to z = δη, we can

obtain pressure field which is the same as (2.105)

p(x, y, z, t) = pa + η − z

δ

− µ2{(δη − z)F21t + (H2 − ξ2)F22t

+ δũ · [∇F21(δη − z) + ∇F22(H
2 − ξ2) + 2F22∇h(δη − z)]}(2.243)

where

F21t =
∂F21

∂t
; F22t =

∂F22

∂t
(2.244)

and

F21 = ∇h · ũ (2.245)

F23 =
1

2
∇ · (hũ) (2.246)

F22 =
1

2
∇ · ũ (2.247)

with

F21 = 2F23 − 2hF22 (2.248)

Now, we proceed to integrate (2.242) term by term. The first term is

∫ δη

−h
udz = Mw + Mr. (2.249)

The second term is

∫ δη

−h
uudz =

∫ δη

−h
(uw + ur)(uw + ur)dz = I + II + III + IV (2.250)
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where

I ≡ MwMw

H
+O(µ4) (2.251)

II ≡ −MwrMwr

r
+ CMwr +O(µ4) (2.252)

III ≡ −MwrMwr

r
+ CMwr +O(µ4) (2.253)

with

Mwr =
∫ δη

δη−r
uwdz

= ũr + µ2(∇F21 + 2F22∇h)(Ahr −
H2 − (H − r)2

2
)

+µ2(Bh2r − H3 − (H − r)3

3
)∇F22 (2.254)

Mwr is the wave velocity contribution of the flux in the roller.

IV ≡ CCr − 2CMwr +
MwrMwr

r
+O(µ4) (2.255)

So we have

II + III + IV =
CCr2 − MwrMwr

r
(2.256)

Hence the second term is now written as

∫ δη

−h
uudz =

MwMwj

H
+

CCr2 − MwrMwr

r
. (2.257)

The third term is

∫ δη

−h
pdz =

H2

2δ
−µ2H2{[F23t +(

2H

3
−h)F22t] + δũ · [∇F23 +(

2H

3
−h)F22t]} (2.258)

The fourth term is

p|z=−h =
H

δ
− 2µ2H{[F23t + (

H

2
− h)F22t] + δũ · [∇F23 + (

H

2
− h)∇F22]} (2.259)
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Substituting the four terms into equation (2.242), we obtain the momentum equation for

the whole water column

∂Mw

∂t
+

∂Mr

∂t
+ δ∇ · [MwMw

H
+

CCr2 − MwrMwr

r
]

+ ∇[
H2

2δ
− µ2H2{[F23t + (

2H

3
− h)F22t] + δũ · [∇F23 + (

2H

3
− h)∇F22]}]

− ∇h[H
δ

− 2µ2H{[F23t + (
H

2
− h)F22t] + δũ · [∇F23 + (

H

2
− h)∇F22]}]

= 0 (2.260)

Equation (2.260) is the new Boussinesq momentum equation with clear physical meaning

for every term. It has the following observed properties 1) the equation is fully nonlinear

since all δ terms are kept up to O(µ2); 2) the equation is also in terms of ũ which will

recover Nwogu (1993), Wei et al. (1995) uα, Kennedy et al. (2001) moving level and

Gobbi et al. (2000) multi-level reference velocities; 3) the equation is more compact

than equations given by previous sections; 4) the equation is written in divergence form

except the bottom pressure terms; 5) the equation includes the momentum balance effect

of surface roller for spilling breakers.

2.4 Final Form of Boussinesq Equation

The final second order Boussinesq equations can be summarized here.

(1) Conservation of Mass (COM)

∂η

∂t
+ ∇ · Mw + ∇ · Mr = 0 (2.261)

where Mw is volume flux due to irrotational flow uw and also defined as

Mw ≡
∫ δη

−h
uwdz (2.262)

Mw = Hũ + µ2H{(Ah− H

2
)2∇F23 + (Bh2 − H2

3
− 2Ah2 + hH)∇F22} (2.263)

We see that (2.263) is exactly the same as previous Boussinesq equations.

Mr ≡
∫ δη

−h
urdz (2.264)
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Mr =
∫ δη−r

−h
0dz +

∫ δη

δη−r
(C − uw)dz

= (C − ũ)r +O(µ2r) (2.265)

(2) Equation of Motion (EOM)

∂Mw

∂t
+

∂Mr

∂t
+ δ∇ · [MwMw

H
+

CCr2 − MwrMwr

r
]

+ ∇[
H2

2δ
− µ2H2{[F23t + (

2H

3
− h)F22t] + δũ · [∇F23 + (

2H

3
− h)∇F22]}]

− ∇h[H
δ

− 2µ2H{[F23t + (
H

2
− h)F22t] + δũ · [∇F23 + (

H

2
− h)∇F22]}]

= 0 (2.266)

In dimensional form, we have

∂Mw

∂t
+

∂Mr

∂t
+ ∇ · [MwMw

H
+

CCr2 − MwrMwr

r
]

+ ∇[
H2

2
−H2{[F23t + (

2H

3
− h)F22t] + ũ · [∇F23 + (

2H

3
− h)∇F22]}]

− ∇h[H − 2H{[F23t + (
H

2
− h)F22t] + ũ · [∇F23 + (

H

2
− h)∇F22]}]

= 0 (2.267)

Mw = Hũ +H{(Ah− H

2
)2∇F23 + (Bh2 − H2

3
− 2Ah2 + hH)∇F22} (2.268)

Mr =
∫ η−r

−h
0dz +

∫ η

η−r
(C − uw)dz

= (C − ũ)r +O(µ2r) (2.269)

Mwr =
∫ η

η−r
uwdz

= ũr + (∇F21 + 2∇hF22)(Ahr −
H2 − (H − r)2

2
)

+(Bh2r − H3 − (H − r)3

3
)∇F22 (2.270)
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Chapter 3

SEDIMENT TRANSPORT

Up to now, most of our intermediate to large scale sediment transport models are

still based on calculation of the transport rate from empirical or semi-empirical corre-

lations between the driving flow and the sediment motion. This is due to our limited

computer power and knowledge on how to estimate the forces exerted on sediments. The

ultimate law that governs the motion of sediments is Newton’s Second Law, which means

that if we are to model sediment transport dynamically, we need to find external forces

on sediments and integrate Newton’s Second Law to obtain sediment transport rate. It is,

however, still quite difficult to identify and quantify the forces on sediments. Roughly

speaking, the forces felt by a non-cohesive sediment particle exposed in the flow and sur-

rounded by other sediment particles include gravity, skin drag, form drag, inertial force

and contact force of other particles. Skin drag is due to flow shear on the surface of sedi-

ment particles. Form drag is due to pressure of fluid on the sediments. Inertial force is due

to relative acceleration between flow and sediment particles. Contact force is due to shear

force and normal force between sediment particles when they impinge on each other. The

only thing that’s obvious and easy to estimate is gravity. Skin drag, form drag, inertial

force are all related to detailed fluid flow field and the relative motion between sediments

and fluid which are yet quite difficult to obtain except for very small scale problems. For

suspended fine sediments, it’s usually assumed that the particles follow the water flow

such that no dynamic model is needed. The transport rate can be simply calculated by

integration of uc, where u is flow velocity, and c is sediment volumetric concentration.
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Modeling small scale sediment transport can be found in Drew (1975, 1976, 1983),

Dong and Zhang (1999), Drake and Calantoni (2001), Hsu (2002), Mina and Sato (2004)

and Dartevelle (2004). In the field of granular and particle laden flows, most studies

are still based on one directional flows or steady flows such as pneumatic transport in

pipelines and particle flows down inclined chutes (Savage, 1984). In Savage (1984), sim-

ple rheology of sediments have been proposed. In Dartevelle (2004) and Ancey (2005),

very comprehensive study on granular flow rheology is presented. In Hsu (2002), detailed

1-D vertical simulation of flows are given by using a granular flow technique. In Drake

and Calantoni (2001), discrete particle simulation has been done based on dynamic forces

exerted on individual grains under oscillatory free stream flow condition to investigate the

effects of free stream acceleration on sediment transport. These small scale simulations

help gain our understanding of sediment transport substantially. However, detailed simu-

lation of sediment motion is still not feasible for engineering practice at this time. There

are also sediment models that are based on the calculation of forces on bulk sands instead

of individual sand particles (Prasad and Singh, 1982; Mina and Sato, 2004). This ap-

proach should become the next generation of sediment transport model in the nearshore

region.

Presently, however, sediment transport models in engineering are still mostly fo-

cused on calculating transport rates based on hydrodynamic quantities such as flow ve-

locity and bottom shear stress, and the problem is simplified to a large extent. As a result,

there exist a number of proposed formulas in the literature which are based on experi-

ments or semi-empirical analysis. These models are effective in their suggested range of

parameters, with most of them for 1-D and one directional flows. For transport rate under

conditions of combined waves and currents, there is still a large amount of uncertainty. In

this study we will mainly focus on testing and extending sediment transport formulas that

are proposed for nearshore environment.

In this chapter, we first review some of the existing sediment transport formulas.
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Then we focus on ad-hoc extensions to the Bagnold (1966) and Bailard (1981) formu-

las by including effects of free stream flow acceleration. Next, we discuss the use of

Meyer-Peter-Müller (1948) formula with instantaneous bottom shear stress obtained from

detailed simulation of the bottom boundary layer.

3.1 Various Transport Formulas

Numerous sediment transport formulas have been proposed in the literature. For

steady flow, significant ones include Du Boys (1879), Schoklitsch (1930), Shields (1936),

Einstein (1942), Meyer-Peter (1948, 1951), Einstein (1950), Schoklitsch (1950), Nielsen

(1992), Bagnold (1966), Grass (1981) and Van Rijn (1984). For sediment transport due

to waves or combined waves and currents, up to date formulas are mostly based on quasi-

steady assumption, which include Madsen and Grant (1976), Bailard (1981) and Trow-

bridge and Young (1989). Recently developed transport formulas are also available from

Dibajnia and Watanabe (1998) and Soulsby and Damgaard (2005).

3.1.1 Sediment transport formulas for steady flow

These formulas are from the investigation of rivers, channels and pipelines with

which the flow are predominantly one directional and relatively steady in time. A review

is available in Chanson (1999). In the following formulas, qs is volumetric sediment

transport rate per unit width (m2/s), q is volumetric water flux (m2/s), τ0 is bed shear

stress, τ0c is critical bed shear stress for initiation of sediment transport, ρ is water density,

ρs is dry sediment density, s is sediment specific gravity (s = ρs/ρ).

(1) Du Boys (1879)

qs = λτ0(τ0 − τ0c) (3.1)

where

λ =
0.54

(ρs − ρ)g
(3.2)
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or

λ ∝ d−3/4
s . (3.3)

λ is called the characteristic sediment coefficient. Equation (3.2) is from laboratory exper-

iments with uniform grains of various kinds of sand and porcelain by Schoklitsch (1914).

(3.3) is for grain size 0.125mm < ds < 4mm based on laboratory data of Straub (1935).

(2) Schoklitsch (1930)

qs = λ′(sin θ)k(q − qc) (3.4)

qc = 1.944 × 10−2ds(sin θ)
−4/3 (3.5)

with 0.305mm < ds < 7.02mm from laboratory experiments,and θ being slope of an

open channel. λ′ and k are empirical coefficients to be calibrated.

(3) Shields (1936)

qs
q

= 10
sin θ

s

τ0 − τ0c

ρg(s− 1)ds

(3.6)

with 1.06 < s < 4.25 and 1.56mm < ds < 2.47mm

(4) Einstein (1942)

qs
√

(s− 1)gd3
s

= 2.15exp(−0.391
ρ(s− 1)gds

τ0
) (3.7)

with qs√
(s−1)gd3

s

< 0.4, 1.25 < s < 4.25 and 0.315mm < ds < 28.6mm for sand mixtures

and ds ≈ d35 to d45.

(5) Meyer-Peter (1948, 1951)

qs
√

(s− 1)gd3
s

= (
4τ0

ρ(s− 1)gds

− 0.188)3/2 (3.8)

for particle mixtures with ds ≈ d50 from laboratory experiments and θ being slope of

open channel.
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(6) Einstein (1950)

qs
√

(s− 1)gd3
s

= f(
ρ(s− 1)gds

τ0
) (3.9)

with qs√
(s−1)gd3

s

< 10, 1.25 < s < 4.25 and 0.315mm < ds < 28.6mm for sand mixtures

and ds ≈ d35 to d45 from laboratory experiments. Function f() is based on a design chart

of Einstein (1950).

(7) Bagnold (1966)

i = ib + is = ω[
ǫB

tanφ− tan β
+

ǫS(1 − ǫB)

(ω/Ūs) − tan β
] (3.10)

where i is total immersed weight transport rate of sediments per unit width, ib is bed load

immersed weight transport rate, is is suspended load immersed weight transport rate, ω

is called available fluid power, ǫB and ǫS are empirical coefficients. Ūs is the mean fluid

flow velocity to transport suspended sediments. ω is calculated by

ω = crρu
∗3 (3.11)

with cr a general constant under conditions of no suspended load, and u∗ is the friction

velocity.

(8) Van Rijn (1984)

qs(u, h) =











Au(|u| − ucr)
2.4 if|u| > ucr

0
(3.12)

where ucr is the threshold current speed which is calculated by

ucr =











0.19(d50)
0.1log10(

2h
d50

) if 100 ≤ d50 ≤ 500 µm

8.5(d50)
0.6log10(

2h
d50

) if 500 ≤ d50 ≤ 2000 µm
(3.13)

and

A =
d50(0.005(d50

h
)0.2 + 0.012D−0.6

∗ )

(gd50(s− 1))1.2
(3.14)

D∗ = d50(
g

ν2
(s− 1))1/3. (3.15)
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with u the velocity near bed and ν the kinematic viscosity of water, h is the water depth.

(9) Nielsen (1992)

qs
√

(s− 1)gd3
s

= (
12τ0

ρ(s− 1)gds

− 0.05)

√

τ0
ρ(s− 1)gds

(3.16)

with 1.25 < s < 4.22 and 0.69mm < ds < 28.7mm from re-analysis of laboratory data.

3.1.2 Sediment transport formulas for wave current climate

(1) Madsen and Grant (1976)

φ(t) = 40ψ3(t) (3.17)

where

φ(t) =
qs(t)

wfalld
(3.18)

and

ψ(t) =
τ0(t)

(s− 1)ρgd
(3.19)

with wfall the sediment fall velocity, d the sediment diameter, ψ the instantaneous shields

parameter. τ0(t) is instantaneous bed shear stress predicted by

τ0(t) =
1

2
fwρ|ub(t)|2

ubw(t)

|ubw(t)| (3.20)

for pure waves,

τ0(t) =
1

2
fcρ|Ub|2

Ub

|Ub|
(3.21)

for pure currents and

τ0(t) =
1

2
fcwρ|ub(t)|2

ub(t)

|ub(t)|
(3.22)

for combined waves and currents. fw is the wave friction coefficient, fc is the current

friction coefficient and fcw is the combined wave current friction coefficient given by

Jonsson (1966)

fcw =
|Ub|fc + |ubw(t)|fw

|Ub| + |ubw|(t)
(3.23)
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where Ub = ub(t) is the current at bottom and ubw is the wave velocity at the bottom.

ub(t) = Ub + ubw. All these calculations of bottom shear stress are under the quasi-

steady assumption. The effect of wave skewness1 to sediment transport in equation (3.17)

is discussed in Madsen and Grant (1976). The effect of bottom slope was treated by

modifying the instantaneous Shields parameter ψ(t) to

ψ(t) =
τ0(t)

(s− 1)ρgd
− cm sin(β) (3.24)

with β being the local bottom slope. The negative sign is introduced to reflect the fact

that gravity acts in the down-slope direction.

(2) Bailard (1981)

< itot > = ρcf
ǫB

tanφ

[

< |ub|2ub > −tan β

tanφ
< |ub|3 > l

]

+ ρcf
ǫS
wfall

[

< |ub|3ub > − ǫS
wfall

tan β < |ub|5 > l

]

(3.25)

where itot is total immersed weight sediment transport rate which can be converted to

total volumetric sediment transport rate qt by:

qtot =
itot

g(s− 1)ρ
(3.26)

with ǫB and ǫS the same as Bagnold (1966), β the bed slope angle relative to horizontal

plane, l the direction of upslope, i.e. direction of the gradient of bottom elevation ∇zb, cf

is the combined wave current friction coefficient equivalent to fcw of (3.23)

(3) Trowbridge and Young (1989)

In Trowbridge and Young (1989), the sheet flow transport rate is assumed to be

proportional to the bed shear stress according to experiments by Horikawa et al. (1982).

1 Note that in many publications, wave skewness is referred to as wave asymmetry,

while here we use the term skewness for asymmetry of wave form about mean water

level, and use the term wave asymmetry only for the asymmetry of wave form in

horizontal direction or in time
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qs(t)

walld
=

Kτb(t)

ρgd(s− 1)
. (3.27)

A quadratic drag law with a time shift T is then used to calculate the shear stress τb(t) =

fwρ|ub(t+ T )|ub(t+ T ) to give

qs(t)

wfalld
=
Kfwub(t+ T )|ub(t+ T )|

gd(s− 1)
. (3.28)

Equation (3.28) predicts sheet flow sediment transport rate with a phase lead to the free

stream velocity instead of phase lag.

(4) Soulsby and Damgaard (2005)

qb
√

g(s− 1)d3
= A2θ

1/2(θ − θcr) (3.29)

with

A2 =
2A1

(n+ 1)(n+ 2)µ
(3.30)

and 8.2 < A1 < 16.1 empirically. Here qb is bedload volumetric sediment transport rate.

n is flow profile parameter about 0.75, µ = 0.2 tan 32◦, with 32◦ a typical angle of repose

for sand. θ is Shields parameter equivalent to (3.19)

θ =
τ0(t)

(s− 1)ρgd
(3.31)

3.2 Ad-hoc Modifications to Bagnold (1966) and Bailard (1981) Formulas

Bailard (1981) formula (3.25) is basically a time averaged version of the Bagnold

(1966) formula with bottom shear stress obtained through quadratic correlation to the free

stream velocity instantaneously by using wave current bottom friction coefficient cf .

Recent evidence (Gallagher et al., 1998, for example) indicates that the energetic

transport formula (Bagnold, 1966; Bailard, 1981), derived originally under steady flow

conditions, is inadequate for predicting transport in unsteady wave environment where

waves provide the dominant contribution to bed shear stress. Elgar et al. (2001) have
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shown several instances from the Duck94 data set, in which onshore bar migration is

associated with gradients of acceleration skewness. Similar results have been noted in

direct simulations of grain flows by Drake and Calantoni (2001), who have provided an

extended version of the Bailard model for wave averaged transport by incorporating an

acceleration skewness effect.

To date, efforts to extend the Bagnold (for instantaneous conditions) or Bailard

(for wave-averaged conditions) formulations, including the present study, are ad hoc in

nature and lack a clear theoretical basis for the model extensions being employed.

Here we take the Bagnold formula to calculate the instantaneous transport rate as

the Boussinesq model is able to give instantaneous bottom velocity. Also an acceleration

term is added to the formula in light of the findings in Drake and Calantoni (2001) as well

as field observations of Elgar et al. (2001). The added term here does not correspond

in a direct way to the acceleration skewness measure employed in Drake and Calantoni.

The adaptation of an acceleration term raised to the first power does appear to have some

correspondence with results for bed failure during rapid acceleration, as noted in recent

calculations with a two-phase model of sediment transport (T.-J. Hsu, personal commu-

nication). The calibration coefficient is a dimensional coefficient which thus differs from

the corresponding coefficient appearing in Drake and Calantoni.

The extended formula is presented as:

itot = ib + is + ia = ρcf
ǫB

tanφ
[|ub|2ub −

tan β

tanφ
|ub|3]

+ ρcf
ǫS
wfall

[|ub|3ub −
ǫS tan β

wfall

|ub|5]

+ g(ρs − ρ)Ka(|ub,t| − ubtcr)sign(ub,t) (3.32)

where ib, is, ia are immersed weight sediment transport rate for bed load, suspended

load and the effect of free stream acceleration respectively, φ is the internal angle of

friction, tan β is the slope of the bed level, cf is friction coefficient, wfall is sediment
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fall velocity, ub is bottom velocity. ǫB and ǫS are effectiveness coefficients for bed load

and suspended load. ub,t is the acceleration of instantaneous free stream velocity ub, and

ubtcr is a threshold value. Ka is an empirical coefficient that needs calibration. When

|ub,t| − ubtcr < 0, the last term ia is set to be zero.

The total volumetric sediment transport rate qtot(x, t) is calculated as

qtot =
itot

g(ρs − ρ)
(3.33)

3.3 Meyer-Peter Müller Formula with Shear Stress by Boundary Layer Model

The extended Bailard formula by Drake and Calantoni (2001) and equation (3.32)

have no specific mechanical underpinning. Recently, using a small-scale two-phase sheet

flow model, Hsu and Hanes (2004) demonstrated that the instantaneous sediment trans-

port rate under unsteady free stream flow follows the instantaneous bed shear stress

closely.

Previous work such as Ribberink (1998) and Hsu and Hanes (2004) tried to esti-

mate such transport rate using instantaneous bed shear stress estimation through simple

power laws, and their model accuracy relies strongly on the bed shear stress prediction.

In the present work , we use a physically-based model for the local boundary layer struc-

ture over the vertical, integrated with the Boussinesq model in order to provide a profile

evolution model.

The adopted formula for total load is written as

Ψ = A(θ − θc)
b (3.34)

where Ψ is normalized transport rate, θ is the Shields parameter, θc is threshold value

of Shields parameter for initiation of sediment transport, A and b are dimensionless con-

stants, with typical values A = 11 and b = 1.65, which should be calibrated for specific

applications.

Ψ = qtot/(d
√

(s− 1)gd) (3.35)
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θ = τb/((ρs − ρ)gd) (3.36)

where τb is instantaneous bed shear stress obtained from solving wave bottom boundary

layer instead of using quadratic correlations.
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Chapter 4

NUMERICAL SOLUTION OF BOUSSINESQ EQUATIONS

In this chapter, we present the details of numerical solution to the Boussinesq

equations for hydrodynamics. In order to create a model that can accomodate complicated

nearshore bathymetry and shoreline geometry, we solve the problem using a generalized

curvilinear coordinate system.

First, the continuity equation (COM) (2.261) and momentum equation (EOM)

(2.267) are transformed to the generalized coordinate system. Various modeled effects

such as wave breaking, bottom friction, wave maker, subgrid mixing and open boundary

absorption, are added to the momentum equations.

The resulting equations are solved in the image domain by finite difference method

using the 3rd order Adams-Bashforth explicit predictor and the 4th order Adams-Moulton

implicit corrector scheme for time integration and 4th order difference scheme for O(1)

part and 2nd order difference scheme for O(µ2) part for spatial discretization.

A staggered grid system is employed here to improve numerical stability. The

boundary conditions (4.101) and (4.110) are implemented in a symmetric sense rather

than using the off-centered difference scheme in FUNWAVE version 1.0. Numerical sim-

ulation experience shows that a symmetric scheme for boundary conditions gives better

numerical stability (Zhen, 2004).

An efficient wet-dry scheme is implemented for wave run up and inundation.
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4.1 Equations in Generalized Coordinate System

4.1.1 Vector form of equations

The dimensional form of Boussinesq equations in Chapter 2 are given by the equa-

tions of

Conservation of Mass (COM):

∂H

∂t
+ ∇ · Mw + ∇ · Mr = 0 (4.1)

Equation of Motion (EOM):

∂Mw

∂t
+
∂Mr

∂t
+ ∇ · [MwMw

H
+

CCr2 − MwrMwr

r
]

+ ∇[
gH2

2
−H2{[F23t + (

2H

3
− h)F22t] + ũ · [∇F23 + (

2H

3
− h)∇F22]}]

− ∇h[gH − 2{[F23t + (
H

2
− h)F22t] + ũ · [∇F23 + (

H

2
− h)∇F22]}]

= 0 (4.2)

where

Mw = Hũ +H{(Ah− H

2
)2∇F23 + (Bh2 − H2

3
− 2Ah2 + hH)∇F22} (4.3)

Mr =
∫ η

η−r
(C − uw)dz = (C − ũ)r +O(µ2r) (4.4)

Mwr =
∫ η

η−r
uwdz

= ũr + (∇F21 + 2∇hF22)(Ahr −
H2 − (H − r)2

2
)

+(Bh2r − H3 − (H − r)3

3
)∇F22 (4.5)

4.1.2 Additional effects for actual implementation

In addition to the equations shown above, we need to add the following effects for

an actual implementations: 1) damping /friction; 2) wave breaking; 3) wave absorbing

72



boundary; 4) subgrid mixing; 5) wave generation /source term; 6) wet-dry scheme for

moving shoreline.

When added with the source term (Kennedy et al., 2000; Chen et al., 2003; Wei et

al., 1999) the COM (4.1) becomes

Ht = E + fs(x, y, t) (4.6)

where

E = −∇ · (Mw + Mr) (4.7)

When adding damping, breaking, absorbing, source term and subgrid mixing, the mo-

mentum equation(4.2) becomes:

∂Mwi

∂t
= +Γb + Γbr + Γsg + Γsp − gH∇ps + Γpr + Γcv + Γro (4.8)

where Γpr, Γcv, Γro represent the pressure, convection and roller terms respectively.

Γb,Γbr,Γsg,Γsp and −g∇ps represent the bottom friction, breaking term, subgrid-mixing

term, sponge layer term and source term respectively. The breaking term Γbr here is from

the eddy viscosity breaking model by Kennedy et al. (2000) and Chen et al. (2003). This

is an alternative approach for spilling wave breakers that is parallel to the roller approach.

We keep it for diagnostic and comparison purpose. The pressure gradient term is given

by

Γpr = − ∇[
gH2

2
−H2{[F23t + (

2H

3
− h)F22t] + ũ · [∇F23 + (

2H

3
− h)∇F22]}]

+ ∇h[gH − 2H{[F23t + (
H

2
− h)F22t] + ũ · [∇F23 + (

H

2
− h)∇F22]}](4.9)

In (4.9), the gradients of the time derivative terms F23t and F22t are found to be relatively

difficult to discretize and they introduce instability. In order to cancel these terms, we

define variable Mdw = (Mdw1,Mdw2) = Mdwi, (i = 1, 2):

Mdw = Hũ +H{(Ah−H)2∇F23 +
(Bh2 − 2Ah2 + hH)

2
2∇F22} (4.10)
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such that

Mw = Mdw +H2∇F23 −
H3

3
∇F22 (4.11)

and can approximately cancel the [F23t + (2H
3

− h)F22t] term in Γpr. Thus, the EOM

becomes:

∂Mdw

∂t
= Γpr + Γcv + Γro + Γb + Γbr + Γsg + Γsp − gH∇ps (4.12)

with

1) Pressure term Γpr

Γpr = − ∇[
gH2

2
−H2{ũ · [∇F23 + (

2H

3
− h)∇F22]}]

+ ∇h[gH − 2H{[F23t + (
H

2
− h)F22t]

+ ũ · [∇F23 + (
H

2
− h)∇F22]}] (4.13)

2) Convection term Γcv

Γcv = −∇ · [MwMw

H
] (4.14)

3) Roller term Γro

Γro = −∂Mr

∂t
−∇ · [CCr2 − MwrMwr

r
] (4.15)

4) Damping term (bottom friction)

Classical quadratic damping due to bottom friction is used for wave attenuation

Γb = −fbũ|ũ| (4.16)

where fb is friction coefficient. Typical value is fb ≈ 1.0 × 10−5

5) Breaking term (eddy viscosity breaking model)

Breaking is simulated by the eddy viscosity approach which takes energy out of

the main flow through a localized diffusion mechanism (Kennedy et al., 2000, Chen et al.,

2003). Here the formula is presented in vector form.

Γbr = [∇ · (ν ˜̃
T)] (4.17)
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where

˜̃
T =

1

2
(∇(Hũ) + ∇(Hũ)T ) (4.18)

is a second order tensor that represents the rate of strain. ν is eddy viscosity given by

ν = Bbδ
2
b |(h+ η)ηt| (4.19)

where

Bb =



























1, ηt ≥ 2η∗t
ηt

η∗

t
− 1, η∗t ≤ ηt ≤ 2η∗t

0, ηt ≤ η∗t

(4.20)

η∗t =











η
(F )
t , t− t0 ≥ T ∗

η
(I)
t + t−t0

T ∗
(η

(F )
t − η

(I)
t ), 0 ≤ t− t0 ≤ T ∗

(4.21)

η
(I)
t ≈ Cbr

√

gh (4.22)

η
(F )
t ≈ 0.15

√

gh (4.23)

T ∗ ≈ 5.0
√

h/g (4.24)

t0 is the time when an individual breaking event occurs. Cbr ≈ 0.3to0.65. δb ≈ 1.0to1.5.

The process is that the eddy viscosity is turned on when ηt is greater than η∗t , and turned

off when it drops below η∗t . The eddy viscosity given by (4.19) is filtered using a nine

point numerical filter before being put into Γbr in the implementation.

6) Subgrid mixing term

Subgrid mixing is based on the Smagorinsky theory (Smagorinsky, 1963).

Γsg = [∇ · (νsg
˜̃
T)] (4.25)

where

νsg = Cm∆x∆y| ˜̃D|

= Cm∆x∆y( ˜̃
D : ˜̃

D)1/2 (4.26)
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˜̃
D =

1

2
[∇U + (∇U)T ] (4.27)

and U = (U, V ) is the short-wave averaged velocity defined in (2.110). Cm is a coeffi-

cient with a typical value is about 0.2 . ∆x∆y represents the grid size of the mesh, and it

will be substituted by
√
g0dξ1dξ2, where

√
g0 is the Jacobian of coordinate transform and

ξ1 and ξ2 are curvilinear coordinates to be addressed later.

7) Sponge layer term (absorbing term)

Two major absorbing mechanisms are included for absorbing waves at open bound-

ary to prevent reflection

Γsp = −ω1ũ + ω2∇ · ˜̃
Tsp. (4.28)

where the first term represents Newton cooling, the second term represents pseudo-viscous

dissipation

ωi = Ciωf(x), (i = 1, 2). (4.29)

For a sponge layer at down stream starting from location x = xs and ending at x = xe,

f(x) is given as:

f(x) =
e

x−xs
xe−xs − 1

e− 1
(4.30)

C1, C2 are parameters to control the strength of sponge layer. ω is the frequency of waves

to be absorbed. For random wave, it is chosen to be the peak angular frequency of the

random wave spectra.

8) Source term (wave generation)

We use the Chawla and Kirby (2000) one-way numerical wave maker theory. For

detailed derivations, see the appendix. The advantage of one-way wave maker is to save

some grid points behind the wave maker region, otherwise we need more wave absorbing

grids.

fs = D1e
(−βsx2) (4.31)

and

ps = D2xe
(−βsx2) (4.32)

76



y1(x)

y2(y)

ξ1(ξ)

ξ2(η)

ξ1(ξ)

ξ2(η)

Figure 4.1: Cartesian coordinate and curvilinear coordinate
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Figure 4.2: Covariant basis and contravariant basis

where D1, D2 are defined in appendix (A.21) and (A.10), x is local Cartesian coordinate

measured from the center of source region.

4.1.3 Some notes on curvilinear coordinates

In order to write the governing equations (4.7) and (4.12) in terms of curvilin-

ear coordinate system, we define the curvilinear coordinate system following Shi et al.

(2001). As shown in figure 4.1, the usual Cartesian coordinates (y1, y2) = (x, y) are

transformed to curvilinear coordinates (x1, x2) = (ξ1, ξ2) = (ξ, η).

77



For the convenience of defining inner products and cross products, covariant ba-

sis (g1,g2) and contravariant basis (g1,g2) are defined in figure 4.2. The velocity u is

decomposed using these two non-orthogonal basis vectors

u = u1g1 + u2g2

= ug1 + vg2 (4.33)

and

u = u1g
1 + u2g

2, (4.34)

where (u1, u2) ≡ (u, v) are called contravariant components and (u1, u2) are called co-

variant components.

In our implementation, the contravariant components are employed since they give

simpler boundary conditions (Shi et al., 2001). Some basic definitions about the coordi-

nate transform are presented in the Appendix.

4.1.4 COM and depth integrated EOM in generalized coordinate system

We choose to use contravariant velocity components ũ = (ũ1, ũ2) for all equa-

tions.

COM:

When we substitute (A.47) into COM

Ht = −∇ · M + fs, (4.35)

it becomes

Ht = E ≡ − 1√
g0

∂

∂xk
[
√
g0(M

k
w +Mk

r )] + fs (4.36)

where (x1, x2) = (ξ1, ξ2) is the curvilinear coordinate. Mk
w is transformed by considering

(A.46) and (4.3):

Mk
w = Hũk+ { (Ah− H

2
)[DHU]!k

+ (
Bh2

2
− Ah2 − H2

6
+
hH

2
)[DU]!k} (4.37)
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where

DHU = 2F23 =
1√
g0

∂

∂xl
(
√
g0hũ

l) (4.38)

DU = 2F22 =
1√
g0

∂

∂xl
(
√
g0ũ

l) (4.39)

with k = 1, 2. Calculation of DHU and DU in curvilinear coordinate is

DHU =
1√
g0

[
∂
√
g0hũ

∂ξ1
+
∂
√
g0hṽ

∂ξ2
] (4.40)

DU =
1√
g0

[
∂
√
g0ũ

∂ξ1
+
∂
√
g0ṽ

∂ξ2
] (4.41)

EOM:

Mdwt = Γpr + Γcv + Γro + Γb + Γbr + Γsg + Γsp − gH∇ps (4.42)

1) Mdw:

From (4.10),

Mdw = Hũ +H[(Ah−H)2∇F23 + (Bh2 − 2Ah2 + hH)∇F22] (4.43)

then

Mk
dw = Hũk +H(Ah−H)[

1√
g0

∂

∂xl
(
√
g0hũ

l)]!k

+ H
Bh2 − 2Ah2 + hH

2
[

1√
g0

∂

∂xl
(
√
g0ũ

l)]!k (4.44)

The first component (k = 1) is given as

M1
dw = M̃1

w − F1(ṽ) − F2(ũ, ṽ), (4.45)

where

M̃1
w = Hũ + H(Ah−H)g11

∂[ 1√
g0

∂
∂ξ1

(
√
g0hũ)]

∂ξ1

+ H
Bh2 − 2Ah2 + hH

2
g11

∂[ 1√
g0

∂
∂ξ1

(
√
g0ũ)]

∂ξ1
(4.46)
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−F1(ṽ) = H(Ah−H)g11
∂[ 1√

g0

∂
∂ξ2

(
√
g0hṽ)]

∂ξ1

+ H
Bh2 − 2Ah2 + hH

2
g11

∂[ 1√
g0

∂
∂ξ2

(
√
g0ṽ)]

∂ξ1
(4.47)

−F2(ũ, ṽ) = H(Ah−H)g21{
∂[ 1√

g0

∂
∂ξ1

(
√
g0hũ)]

∂ξ2
+
∂[ 1√

g0

∂
∂ξ2

(
√
g0hṽ)]

∂ξ2
}

+ H
Bh2 − 2Ah2 + hH

2
g21{

∂[ 1√
g0

∂
∂ξ1

(
√
g0ũ)]

∂ξ2
+
∂[ 1√

g0

∂
∂ξ2

(
√
g0ṽ)]

∂ξ2
}.(4.48)

The second component (k = 2) is given by

M2
dw = V = M̃2

w −G1(ũ) −G2(ũ, ṽ), (4.49)

where

M̃2
w = Hṽ +H(Ah−H)g22

∂[ 1√
g0

∂
∂ξ2

(
√
g0hṽ)]

∂ξ2

+ H
Bh2 − 2Ah2 + hH

2
g22

∂[ 1√
g0

∂
∂ξ2

(
√
g0ṽ)]

∂ξ2
(4.50)

−G1(ũ) = H(Ah−H)g22
∂[ 1√

g0

∂
∂ξ1

(
√
g0hũ)]

∂ξ2

+ H
Bh2 − 2Ah2 + hH

2
g22

∂[ 1√
g0

∂
∂ξ1

(
√
g0ũ)]

∂ξ2
(4.51)

−G2(ũ, ṽ) = H(Ah−H)g12{
∂[ 1√

g0

∂
∂ξ1

(
√
g0hũ)]

∂ξ1
+
∂[ 1√

g0

∂
∂ξ2

(
√
g0hṽ)]

∂ξ1
}

+ H
Bh2 − 2Ah2 + hH

2
g21{

∂[ 1√
g0

∂
∂ξ1

(
√
g0ũ)]

∂ξ1
+
∂[ 1√

g0

∂
∂ξ2

(
√
g0ṽ)]

∂ξ1
}.(4.52)

We see that the F1, G1, F2, G2 terms are all associated with cross-derivatives. In order to

solve ũ and ṽ separately using 1-D tridiagonal solvers (see next sections), we choose to

move these terms to the RHS of the equations.

2) pressure term Γpr
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The pressure term Γpr given by (4.13) is now written as

Γpr = −gH∇η + ∇[H2{ũ · [∇F23 + (
2H

3
− h)∇F22]}]

+∇h[−2H{[F23t + (
H

2
− h)F22t] + ũ · [∇F23 + (

H

2
− h)∇F22]}] (4.53)

= −gHη!k + [
H2

2
{ũl[

∂DHU

∂xl
+ (

2H

3
− h)

∂DU

∂xl
]}]!k

+h!k[−H{[DHUT + (
H

2
− h)DUT] + ũl[

∂DHU

∂xl
+ (

H

2
− h)

∂DU

∂xl
]}]

=











Fpr

Gpr











(4.54)

The first component (by setting k = 1) is

Fpr = − gH[g11 ∂η

∂ξ1
+ g21 ∂η

∂ξ2
]

+ g11
∂[H2

2
{(ũ∂DHU

∂ξ1
+ ṽ ∂DHU

∂ξ2
) + (2H

3
− h)(ũ∂DU

∂ξ1
+ ṽ ∂DHU

∂ξ2
)}]

∂ξ1

+ g21
∂[H2

2
{(ũ∂DHU

∂ξ1
+ ṽ ∂DHU

∂ξ2
) + (2H

3
− h)(ũ∂DU

∂ξ1
+ ṽ ∂DU

∂ξ2
)}]

∂ξ2

− [H{DHUT + (
H

2
− h)DUT + (ũ

∂DHU

∂ξ1
+ ṽ

∂DHU

∂ξ2
)

+ (
2H

3
− h)(ũ

∂DU

∂ξ1
+ ṽ

∂DU

∂ξ2
)}](g11 ∂h

∂ξ1
+ g21 ∂h

∂ξ2
) (4.55)

The second component (k = 2) is

Gpr = − gH[g12 ∂η

∂ξ1
+ g22 ∂η

∂ξ2
]

+ g12
∂[H2

2
{(ũ∂DHU

∂ξ1
+ ṽ ∂DHU

∂ξ2
) + (2H

3
− h)(ũ∂DU

∂ξ1
+ ṽ ∂DU

∂ξ2
)}]

∂ξ1

+ g22
∂[H2

2
{(ũ∂DHU

∂ξ1
+ ṽ ∂DHU

∂ξ2
) + (2H

3
− h)(ũ∂DU

∂ξ1
+ ṽ ∂DU

∂ξ2
)}]

∂ξ2

− [H{DHUT + (
H

2
− h)DUT + (ũ

∂DHU

∂ξ1
+ ṽ

∂DHU

∂ξ2
)

+ (
2H

3
− h)(ũ

∂DU

∂ξ1
+ ṽ

∂DHU

∂ξ2
)}](g12 ∂h

∂ξ1
+ g22 ∂h

∂ξ2
), (4.56)
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where

DHUT =
1√
g0

∂

∂xi
(
√
g0hũ

i
t) (4.57)

DUT =
1√
g0

∂

∂xi
(
√
g0ũ

i
t). (4.58)

Calculation of DHUT and DUT is straightforward from (4.40) and (4.41)

DHUT =
1√
g0

[
∂
√
g0hũt

∂ξ1
+
∂
√
g0hṽt

∂ξ2
] (4.59)

DUT =
1√
g0

[
∂
√
g0ũt

∂ξ1
+
∂
√
g0ṽt

∂ξ2
] (4.60)

3) convection term Γcv

Γcv = −∇ · (MwMw

H
)

= −[
1√
g0

∂
√

g0Mk
wMj

w

H

∂xj
gk +

1

H
M j

wM
i
wC

k
jigk]

=











Fcv

Gcv











(4.61)

The first component (k = 1) is

Γ1
cv = Fcv = − 1√

g0

∂
√

g0M1
wM1

w

H

∂ξ1
− 1√

g0

∂
√

g0M1
wM2

w

H

∂ξ2

− (M1
wM

1
wC

1
11 +M2

wM
1
wC

1
21 +M1

wM
2
wC

1
12 +M2

wM
2
wC

1
22). (4.62)

The second component (k = 2) is

Γ2
cv = Gcv = − 1√

g0

∂
√

g0M2
wM1

w

H

∂ξ1
− 1√

g0

∂
√

g0M2
wM2

w

H

∂ξ2

− (M1
wM

1
wC

2
11 +M2

wM
1
wC

2
21 +M1

wM
2
wC

2
12 +M2

wM
2
wC

2
22). (4.63)

4) Roller contribution term Γro

Γro = −∇ · (rCC − MwrMwr

r
) − ∂Mr

∂t

= − 1√
g0

[
∂
√
g0(rC

kCj − 1
r
Mk

wrM
j
wr)

∂xj
]gk − [(rCjCi − 1

r
M j

wrM
i
wr)C

k
ji]gk

=











Fro

Gro











(4.64)
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The first component (k = 1) is

Fro = − 1√
g0

[
∂
√
g0(rC

1C1 − 1
r
M1

wrM
1
wr)

∂ξ1

∂
√
g0(rC

1C2 − 1
r
M1

wrM
2
wr)

∂ξ2
]

− [(rC1C1 − 1

r
M1

wrM
1
wr)C

1
11 + (rC1C2 − 1

r
M1

wrM
2
wr)C

1
12

+ (rC2C1 − 1

r
M2

wrM
1
wr)C

1
21 + (rC2C2 − 1

r
M2

wrM
2
wr)C

1
22]. (4.65)

The second component (k = 2) is

Gro = − 1√
g0

[
∂
√
g0(rC

2C1 − 1
r
M2

wrM
1
wr)

∂ξ1

∂
√
g0(rC

2C2 − 1
r
M2

wrM
2
wr)

∂ξ2
]

− [(rC1C1 − 1

r
M1

wrM
1
wr)C

2
11 + (rC1C2 − 1

r
M1

wrM
2
wr)C

2
12 (4.66)

+ (rC2C1 − 1

r
M2

wrM
1
wr)C

2
21 + (rC2C2 − 1

r
M2

wrM
2
wr)C

2
22]. (4.67)

5) Bottom friction Γb:

Γb = −fbũ|ũ|

= −fbũ
k(ũ · ũ)1/2

= −fbũ
k(ũmgm · ũlg

l)1/2

= −fbũ
k(ũlũl)

1/2

= −fbũ
k(ũlglmũ

m)1/2

= −fbũ
k[(ũ, ṽ)







g11 g12

g21 g22













ũ

ṽ





]1/2 (4.68)

6) Breaking term Γbr:

Γbr = [∇ · (νbr
˜̃
T)] (4.69)

˜̃
T =

1

2
(∇(Hũ) + ∇(Hũ)T ) (4.70)

Since

∇(Hũ) = (Hũi),jgig
j

= gjk(Hũi),jgigk (exchange j, k →)

= gkj(Hũi),kgigj, (4.71)
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we can exchange i, j in the upper equation except the basis gigj part, to obtain

(∇(Hũ))T = gki(Hũj),kgigj. (4.72)

So,

˜̃
T = T ijgigj =

1

2
[gkj(Hũi),k + gki(Hũj),k]gigj (4.73)

or

T ij =
1

2
[gkj(Hũi),k + gki(Hũj),k]. (4.74)

Thus, according to (A.60) we have:

Γbr = (
1√
g0

∂
√
g0νT

kl

∂xl
+ Ck

jiνbrTji)gk =











Fbr

Gbr











(4.75)

The first component (k = 1) is

Fbr = Γ1
br = [

1√
g0

∂
√
g0νT

11

∂ξ1
+

1√
g0

∂
√
g0νT

12

∂ξ2

+ νbr(C
1
11T

11 + C1
12T

12 + C1
21T

21 + C1
22T

22)]. (4.76)

The second component (k = 2) is

Gbr = Γ2
br = [

1√
g0

∂
√
g0νT

21

∂ξ1
+

1√
g0

∂
√
g0νT

22

∂ξ2

+ νbr(C
2
11T

11 + C2
12T

12 + C2
21T

21 + C2
22T

22)]. (4.77)

7) Subgrid mixing term Γsg:

Since Γsg has the same structure as Γbr, it is easy to show that

Γsg = (
1√
g0

∂
√
g0νsgT

kl

∂xl
+ Ck

jiνsgTji)gk =











Fsg

Gsg











(4.78)

The first component (k = 1) is

Fsg = Γ1
sg = [

1√
g0

∂
√
g0νsgT

11

∂ξ1
+

1√
g0

∂
√
g0νsgT

12

∂ξ2

+ νsg(C
1
11T

11 + C1
12T

12 + C1
21T

21 + C1
22T

22)]. (4.79)
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The second component (k = 2) is

Gsg = Γ2
sg = [

1√
g0

∂
√
g0νsgT

21

∂ξ1
+

1√
g0

∂
√
g0νsgT

22

∂ξ2

+ νsg(C
2
11T

11 + C2
12T

12 + C2
21T

21 + C2
22T

22)], (4.80)

where

νsg = Cm
√
g0dξ1dξ2(

˜̃
D : ˜̃

D)1/2

= Cm
√
g0dξ1dξ2(D

ijDij)
1/2 (4.81)

and

˜̃
D =

1

2
[∇U + (∇U)T ] = Dijgigj = Dijg

igj. (4.82)

Dij and Dij are the contravariant components and covariant components of
˜̃
D respec-

tively. Since

∇(U) = (U
i
),jgig

j

= gjk(U
i
),jgigk (exchange j, k →)

= gkj(U
i
),kgigj, (4.83)

we can exchange i, j in the upper equation except the basis gigj to get

(∇(U))T = gki(U
j
),kgigj. (4.84)

So that

Dij =
1

2
[gkj(U

i
),k + gki(U

j
),k]. (4.85)

Similarly, since

∇(U) = (U
i
),jgig

j (gi = gikg
k →)

= gik(U
i
),jg

kgj (exchange i, k →)

= gki(U
k
),jg

igj, (4.86)
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by exchanging i, j in the upper equation to get

(∇(U))T = gkj(U
k
),ig

igj. (4.87)

So

Dij =
1

2
[gki(U

k
),j + gkj(U

k
),i] (4.88)

Another way to calculate Dij is

˜̃
D = Dijgigj

= Dijgilg
lgjmgm (exchange i with l and j with m→)

= gligmjD
lmgigj

= Dijg
igj. (4.89)

Thus,

Dij = gligmjD
lm, (4.90)

i.e., we can use the upper transform to get Dij once we calculated Dlm. Substituting Dij

and Dij into (4.81), we have

νsg = Cm
√
g0dξ1dξ2(D

11D11 +D12D12 +D21D21 +D22D22)
1/2. (4.91)

8) Sponge layer term Γsp:

Γsp = −ω1Hũ + ω2H∇ · ˜̃
Tsp (4.92)

with

˜̃
Tsp = T ij

spgigk (4.93)

Similar to (4.74), T ij
sp can be calculated by

T ij
sp =

1

2
[gkjũi

,k + gkiũ
j
,k]. (4.94)
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Then

Γsp = −ω1Hũ
kgk + ω2H(

1√
g0

∂
√
g0T

kl
sp

∂xl
+ Ck

jiT
ji
sp)gk

=











Fsp

Gsp











(4.95)

The first component (k = 1) is

Fsp = Γ1
sp = − ω1Hũ

+ ω2H[
1√
g0

∂
√
g0T

11
sp

∂ξ1
+

1√
g0

∂
√
g0T

12
sp

∂ξ2

+ (C1
11T

11
sp + C1

12T
12
sp + C1

21T
21
sp + C1

22T
22
sp )]. (4.96)

The second component (k = 2) is

Gsp = Γ2
sp = − ω1Hṽ

+ ω2H[
1√
g0

∂
√
g0T

21
sp

∂ξ1
+

1√
g0

∂
√
g0T

22
sp

∂ξ2

+ (C2
11T

11
sp + C2

12T
12
sp + C2

21T
21
sp + C2

22T
22
sp )]. (4.97)

Note that
˜̃
T,

˜̃
D,

˜̃
Tsp are similar in expression, so they can be calculated in a single pro-

cedure to save coding cost.

9) Wave maker term −gH∇(ps):

−gH∇(ps) = −gH(ps)
!k

= −gHgjk ∂ps

∂xj
gk

=











Fps

Gps











(4.98)

where

Fps = −gH[g11∂ps

∂ξ1
+ g21∂ps

∂ξ2
] (4.99)

Gps = −gH[g12∂ps

∂ξ1
+ g22∂ps

∂ξ2
] (4.100)
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Figure 4.3: Shoreline boundary condition

4.1.5 Curvilinear representation of shoreline boundary condition

As shown in figure 4.3, at the shoreline, we require the cross boundary volume flux

to be zero. Let M and n denote the volume flux and normal direction of the boundary

respectively. Then we impose that

M · n = 0, on ∂Ω. (4.101)

where










M = M igi

n = njg
j

(4.102)

So

M · n = M igi · njg
j = M injδ

j
i = M ini = 0, (4.103)

or

M1n1 +M2n2 = 0. (4.104)
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If n = n1g
1 , i.e. n2 = 0 or say ξ2 is the shoreline as in figure 4.3, then the upper equation

gives

M1 = 0 (4.105)

Or, if n = n2g
2, i.e. n1 = 0 or say ξ1 is the shoreline, we obtain

M2 = 0 (4.106)

These two equations are very simple, which is why we choose contravariant components

in the implementation.

To guarantee (4.105) and (4.106) to the second order of accuracy, we require (Wei

and Kirby, 1998):










∇η · n = 0

ũ · n = 0
(4.107)

Accordingly, if n = n1g
1 , then











ũ1 = ũ = 0

(∇η)1 = η!1 = g11 ∂η
∂ξ1

+ g21 ∂η
∂ξ2

= 0
(4.108)

and if n = n2g
2, then











ũ2 = ṽ = 0

(∇η)2 = η!2 = g12 ∂η
∂ξ1

+ g22 ∂η
∂ξ2

= 0
(4.109)

In addition, we impose

∂ũT

∂n
= 0 (4.110)

where ũT is the tangential velocity component. This is not required physically, but can

improve the stability of numerical simulation (Wei and Kirby, 1998).

i) If n = e1 = g1√
g11

, then as shown in figure 4.3 a)

ũT = u · e2
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= ũigi · g2

|g2|
= ũigi · g2√

g22

=
ũigi2√
g22

=
ũg12 + ṽg22√

g22

(4.111)

where ei and ei are unit contravariant and covariant basis vector. Then we have the follow-

ing formula for tangential derivatives (refer to Warsi (1999) for definition of directional

derivative in generalized curvilinear coordinates)

∂ũT

∂n
= n · ∇ũT

=
g1

√
g11

· gjk ∂ũT

∂xj
gk

=
1√
g11

gj1∂ũT

∂xj

=
1√
g11

(ũT )!1 = 0, (4.112)

i.e.

(ũT )!1 = 0. (4.113)

ii) if n = e2 = g2√
g22

then as shown in figure 4.3 b)

ũT = u · e1

= ũigi · g1

|g1|
= ũigi · g1√

g11

=
ũigi1√
g11

=
ũg11 + ṽg21√

g11

, (4.114)

then

∂ũT

∂n
= n · ∇ũT
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=
g2

√
g22

· gjk ∂ũT

∂xj
gk

=
1√
g22

gj2∂ũT

∂xj

=
1√
g22

(ũT )!2 = 0, (4.115)

i.e.

(ũT )!2 = 0. (4.116)

Note that (4.113) and (4.116) are slightly different from Shi et al. (2001) implementation,

where

ũ2(!1) = ṽ!1 = 0 (4.117)

ũ1(!2) = ũ!2 = 0 (4.118)

are used instead. The upper equations assume good orthogonality and homogeneity of the

coordinate system (ξ1, ξ2) near the boundary, in which case g12 = g21 ≈ 0 and
√
g11 and

√
g22 are nearly constants so that ũT ≈ ṽ when the shoreline is on ξ2 and ũT ≈ ũ when

the shoreline is on ξ1. If the mesh generator is good enough, we should use (4.117) and

(4.118) for they are much simpler.

4.2 Grid System and Discretization

4.2.1 Grid system

Figure 4.4 shows the staggered grid system (ξ1, ξ2) = (ξ, η) that is used as the

coordinate curve. ξ1 direction velocities are defined on – points (also called u points) , ξ2

direction velocities are defined on | points (also called v points), while surface elevation

and depth information is defined on × points(also called z points). The corner of a grid is

called a node point (also called 1 point). The coordinate information is defined on node

points. They all use their own independent indices.
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Figure 4.4: Staggered grid system
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4.2.2 Spatial discretization

For example, for ∂f
∂ξ
|z, i.e., ξ1 derivative of function f at z points (here f is defined

on u points), we employ the following finite difference scheme.

a) Second order scheme:

∂f

∂ξ
|z =

fi+1 − fi

dξ
+O((dξ)2) (4.119)

b) Fourth order scheme

∂f

∂ξ
|z =

8(fi+1 − fi) − 0.5(fi+2 + fi+1) + 0.5(fi−1 + fi)

6dξ
+O((dξ)4) (4.120)

where 0.5(fi+2 + fi+1) is an average to obtain f on i + 3
2

point (note that f is defined

on u points) and 0.5(fi−1 + fi) is an average to obtain f on i − 1
2

point. When i is on a

left wall boundary, fi−1 does not exist, then it is replaced by fi+1 for the symmetric case

or replaced by −fi+1 for the anti-symmetric case. The same situation happens to fi+1

if i is on a right wall boundary. For example, for ∂ũ
∂ξ

we should use the anti-symmetric

case, since ũ ≈ 0 at the boundary according to (4.108). An odd function satisfies this

condition and it is anti-symmetric. For ∂ṽ
∂ξ

, we should use the symmetric case, because

∂ṽ
∂ξ

≈ 0 according to (4.117). An even function satisfies this and it is symmetric.

4.2.3 Temporal integration

4.2.3.1 Adams explicit and implicit schemes

For a simple model equation y(t)t = f(y, t), the Adams family of predictor-

corrector schemes are listed below:

1) Adams 1st order explicit predictor and 2nd order implicit corrector











yp+1 = yp + hfp

yp+1 = yi + h
2
(f

p+1
+ fp)

(4.121)

where h is the time step h = ∆t, p is index for current time level, p + 1 is index for next

time level, y predicted value, and f
p+1

= yp+1
t
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2) Adams 2nd order explicit predictor and 3rd order implicit corrector











yp+1 = yp + h
2
(3fp − fp−1)

yp+1 = yi + h
12

(5f
p+1

+ 8fp − fp−1)
(4.122)

3) Adams 3rd order explicit predictor and 4th order implicit corrector











yp+1 = yp + h
12

(23fp − 16fp−1 + 5fp−2)

yp+1 = yi + h
24

(9f
p+1

+ 19fp − 5fp−1 + fp−2)
(4.123)

4.2.3.2 Implementation of Adams schemes

In our case, equation (4.36) and (4.42) are solved. The 4th order implicit corrector

needs 3 previous levels of information, which is not available for the first 2 time steps.

Hence the first step and the second step, 2nd order corrector (4.121) and 3rd corrector

(4.122) are used to start up the simulation.

The first time step (1st order predictor, 2nd order corrector, p=1 level known)

Here, p = 1 level is the initial condition obtained from inputs.

Predictor stage is given by (using (4.121))

Hp+1
i,j = Hp

i,j + ∆tEp
i,j (4.124)

M̃1,p+1
wi,j = M̃1,p

wi,j + ∆tF p
total (4.125)

M̃2,p+1
wi,j = M̃2,p

wi,j + ∆tGp
total (4.126)

where i, j are the spatial indices for ξ1 and ξ2 direction respectively, ∆t is time step and

Ftotal = (F12)t + Fother

Gtotal = (G12)t +Gother

(4.127)

F12 = F1 + F2

G12 = G1 +G2

(4.128)
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Fother = Fpr + Fro + Fb + Fbr + Fsp + Fsg + Fps

Gother = Gpr +Gro +Gb +Gbr +Gsp +Gsg +Gps.
(4.129)

F1, F2 and G1, G2 contain cross derivatives in M1
wd = M̃1

w + F1 + F2 and M2
wd =

M̃2
w +G1 +G2, so they are moved to RHS of the equation. (F12)t is approximated by

(F12)t =
F p

12 − F p−1
12

∆t
(4.130)

Since the p− 1 level is not available, F p−1 is set to be same as F p as an initial guess and

this time derivative is nullified, so the upper predictor becomes

M̃1,p+1
wi,j = M̃1,p

wi,j + ∆tF p
other (4.131)

M̃2,p+1
wi,j = M̃2,p

wi,j + ∆tGp
other (4.132)

The corrector is given by (using (4.121))

Hp+1
i,j = Hp

i,j +
∆t

2
[E

p+1

i,j + Ep
i,j] (4.133)

M̃1,p+1
wi,j = M̃1,p

wi,j +
∆t

2
[F

p+1
total + F p

total] (4.134)

M̃1,p+1
wi,j = M̃2,p

wi,j +
∆t

2
[G

p+1
total +Gp

total] (4.135)

where

F total = (F 12)t + F other

Gtotal = (G12)t +Gother

(4.136)

and here we have

(F
p+1

12 )t ≈
F

p+1

12 − F p
12

∆t
. (4.137)

The upper corrector for M̃1
w and M̃2

w becomes:

M̃1,p+1
wi,j = M̃1,p

wi,j + (F
p+1
12 − F p

12) +
∆t

2
[F

p+1
other + F p

other] (4.138)

M̃2,p+1
wi,j = M̃2,p

wi,j + (G
p+1
12 −Gp

12) +
∆t

2
[G

p+1
other +Gp

other] (4.139)
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The 2nd time step (2st order predictor, 3rd order corrector, p=2)

The predictor stage is given by (usin (4.122))

Hp+1
i,j = Hp

i,j +
∆t

2
[3Ep

i,j − Ep−1
i,j ] (4.140)

M̃1,p+1
wi,j = M̃1,p

wi,j +
∆t

2
[3F p

total − F p−1
total] (4.141)

M̃2,p+1
wi,j = M̃2,p

wi,j +
∆t

2
[3Gp

total −Gp−1
total] (4.142)

where

(F p
12)t ≈

F p
12 − F p−1

12

∆t
(4.143)

is the same as

(F p−1
12 )t ≈

F p
12 − F p−1

12

∆t
. (4.144)

The upper predictor for M̃1
w andM̃2

w becomes

M̃1,p+1
wi,j = M̃1,p

wi,j + (F p
12 − F p−1

12 )
∆t

2
[3F p

other − F p−1
other] (4.145)

M̃2,p+1
wi,j = M̃2,p

wi,j + (Gp
12 −Gp−1

12 )
∆t

2
[3Gp

other −Gp−1
other] (4.146)

The corrector stage is given by (using (4.122))

Hp+1
i,j = Hp

i,j +
∆t

12
[5E

p+1
i,j + 8Ep

i,j − Ep−1
i,j ] (4.147)

M̃1,p+1
wi,j = M̃1,p

wi,j +
∆t

12
[5F

p+1
total + 8F p

total − F p−1
total] (4.148)

M̃2,p+1
wi,j = M̃2,p

wi,j +
∆t

12
[5G

p+1
total + 8Gp

total −Gp−1
total] (4.149)

where

(F
p+1

12 )t ≈
3F

p+1

12 − 4F p
12 + F p−1

12

2∆t
(4.150)

(F p
12)t ≈

F
p+1
12 − F p−1

12

2∆t
(4.151)

(F p−1
12 )t ≈

−3F p−1
12 + 4F p

12 − F
p+1
12

2∆t
(4.152)
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Then the upper corrector for M̃1
w and M̃2

w becomes

M̃1,p+1
wi,j = M̃1,p

wi,j + (F
p+1
12 − F p

12) +
∆t

12
[5F

p+1
other + 8F p

other − F p−1
other] (4.153)

M̃2,p+1
wi,j = M̃2,p

wi,j + (G
p+1
12 −Gp

12) +
∆t

12
[5G

p+1
other + 8Gp

other −Gp−1
other] (4.154)

Beyond the 3rd time step (3rd order predictor, 4th order corrector, p ≥ 3)

In the rest of the time steps we use 3rd order predictor and 4th order corrector.

The predictor stages is given by (using (4.123))

Hp+1
i,j = Hp

i,j +
∆t

12
[23Ep

i,j − 16Ep−1
i,j + 5Ep−2

i,j ] (4.155)

M̃1,p+1
wi,j = M̃1,p

wi,j +
∆t

12
[23F p

total − 16F p−1
total + 5F p−2

total] (4.156)

M̃2,p+1
wi,j = M̃2,p

wi,j +
∆t

12
[23Gp

total − 16Gp−1
total + 5Gp−2

total] (4.157)

where

(F p
12)t ≈

3F p
12 − 4F p−1

12 + F p−2
12

2∆t
(4.158)

(F p−1
12 )t ≈

F p
12 − F p−2

12

2∆t
(4.159)

(F p−2
12 )t ≈

−3F p−2
12 + 4F p−1

12 − F p
12

2∆t
. (4.160)

The upper predictor for M̃1
w and M̃2

w becomes

M̃1,p+1
wi,j = M̃1,p

wi,j + (2F p
12 − 3F p−1

12 + F p
12) +

∆t

12
[23F p

other − 16F p−1
other + 5F p−2

other] (4.161)

M̃p+1
wi,j = M̃2,p

wi,j + (2Gp
12 − 3Gp−1

12 +Gp
12) +

∆t

12
[23Gp

other − 16Gp−1
other + 5Gp−2

other] (4.162)

The corrector stage is given by (using (4.123))

Hp+1
i,j = Hp

i,j +
∆t

24
[9E

p+1
i,j + 19Ep

i,j − 5Ep−1
i,j + Ep−2

i,j ] (4.163)

M̃1,p+1
wi,j = M̃1,p

wi,j +
∆t

24
[9F

p+1

total + 19F p
total − 5F p−1

total + F p−2
total] (4.164)

M̃2,p+1
wi,j = M̃2,p

wi,j +
∆t

24
[9G

p+1
total + 19Gp

total − 5Gp−1
total +Gp−2

total] (4.165)
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where

(F
p+1
12 )t ≈

11F
p+1

12 − 18F p
12 + 9F p−1

12 − 2F p−2
12

6∆t
+O(∆t3) (4.166)

(F p
12)t ≈

2F
p+1
12 + 3F p

12 − 6F p−1
12 + F p−2

12

6∆t
+O(∆t3) (4.167)

(F p−1
12 )t ≈

−2F p−2
12 − 3F p−1

12 + 6F p
12 − F

p+1

12

6∆t
+O(∆t3) (4.168)

(F p−2
12 )t ≈

−11F p−2
12 + 18F p−1

12 − 9F p
12 + 2F

p+1
12

6∆t
.+O(∆t3) (4.169)

Then the upper corrector for M̃1
w and M̃2

w becomes

M̃1,p+1
wi,j = M̃1,p

wi,j + (F
p+1

12 − F p
12) +

∆t

24
[9F

p+1

other + 19F p
other − 5F p−1

other + F p−2
other] (4.170)

M̃2,p+1
wi,j = M̃2,p

wi,j + (G
p+1
12 −Gp

12)

+
∆t

24
[9G

p+1
other + 19Gp

other − 5Gp−1
other +Gp−2

other] (4.171)

4.2.4 Hot-Start problem

In the predictor stage of the first time step (4.129), we need to calculate DHUT

and DUT in Fpr and Gpr which are contained in Fother and Gother. But at that time, only

one level of ũ and ṽ is known from the initial condition. So we are not able to use (4.59)

to calculate them. If the problem is a cold-start problem, i.e. the initial conditions are

identically zero, then we can neglect these terms. Whereas, if it’s a hot-start problem, we

can’t neglect them. They call for special treatments. One simple approach is to replace

the time derivatives by spatial derivatives as follows.

From the momentum equation(4.42), we have order O(1) accuracy

Mwt = H[ũ +O(µ2)]t = −gH∇η +O(δ) +O(µ2) (4.172)

so,

ũt = −g∇η +O(µ2) (4.173)
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Then,

DUT = ∇ · ũt

= −g∇ · ∇η +O(µ2)

= −g 1√
g0

∂

∂xi
(
√
g0g

ji ∂η

∂xj
) +O(µ2) (4.174)

Similarly,

DHUT = ∇ · (hũt)

= −g∇ · (h∇η) +O(µ2)

= −g 1√
g0

∂

∂xi
(h
√
g0g

ji ∂η

∂xj
) +O(µ2) (4.175)

4.3 Obtaining ũ from M̃w

In both the predictor and corrector stages, we get M̃w = (M̃1
w, M̃

2
w), then ũ is

obtained by solving a tridiagonal matrix equation for non-periodic boundary condition

case and by solving a cyclic-tridiagonal matrix equation for periodic boundary condition

case.

By definition (4.46), we have

M̃1
w = Hũ + Hb1

g22

g0

[
1√
g0

(
√
g0ũ)ξ1 ]ξ1

+ Hb2
g22

g0

[
1√
g0

(
√
g0hũ)ξ1 ]ξ1 (4.176)

where

b1 =
Bh2 − 2Ah2 + hH

2
(4.177)

and

b2 = Ah−H. (4.178)

(4.176) is a second order differential equation for ũ, which can be solved by a tri-diagonal

matrix system. Since A, B are related to definitions of the multiple and moving reference

level, which are functions of time. So the coefficients of the equation are time varying.
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For a given u point i, the upper equation can be discretized as:

AAiũi−1 + ũi + CCiũi+1 = DDi (4.179)

where

AAi = (
√
g0)i−1(

g22

g2
0

)i[b1(
√
g0)i + hi−1b2(

√
g0)i

+ (
1

2
b1 +

1

2
hi−1b2)(

√
g0)ξ1 ]/BB (4.180)

CCi = (
√
g0)i+1(

g22

g2
0

)i[b1(
√
g0)i + hi+1b2(

√
g0)i

− (
1

2
b1 +

1

2
hi+1b2)(

√
g0)ξ1 ]/BB (4.181)

DDi = M̃w,i/Hi (4.182)

BB = 1 − 2(
g22

g0

)i(b1 + b2hi) (4.183)

If i is on a wall boundary, then i− 1 in AAi is replaced by i+ 1 when the wall is

at left; and i+ 1 in CCi is replaced by i− 1 when the wall is at right. If i is on a periodic

boundary condition point and i = 1, then i− 1 is replaced by mx− 1 in which mx is the

last grid number. If i is on a periodic boundary condition point and i = mx, then i+ 1 is

replaced by 2. (4.179) is a standard tridiagonal or cyclic tridiagonal matrix system, which

can be readily solved. ṽ can be solved in the same way.

4.4 Iteration Error Control and Under-relaxation

Between iteration step k and k + 1 , the errors of iteration are defined as

errorz =

∑

i

∑

j |ηk+1
i,j − ηk

i,j|
∑

i

∑

j |ηk+1
i,j | (4.184)

and

erroruv =

∑

i

∑

j |ũk+1
i,j − ũk

i,j| + |ṽk+1
i,j − ṽk

i,j|
∑

i

∑

j |ũk+1
i,j | + |ṽk+1

i,j | . (4.185)
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In the very first few time steps, the denominator may be very small for a cold-start prob-

lem. In this case, if the denominator is less than 1.0E − 6 the upper errors are defined

as the numerator to avoid devision by a small number. The convergence criteria is: when

max(erroruv, errorz) is less than an designated value, the iteration is stopped. Also, an

under-relaxation method is applied to get better numerical stability. It is designed as:

(ũ, ṽ, η) = ω(ũ, ṽ, η)k+1 + (1 − ω)(ũ, ṽ, η)k (4.186)

where ω is relaxation parameter chosen to be between 0.5 and 1.0 .

4.5 Calculation of Near Bottom Velocity

The near bottom velocity is of particular importance for it will be used to pre-

dict bedload sediment transport in conjunction with the bottom boundary layer model.

According to the kinematics formulas (2.106) to (2.108), the near bottom velocity is cal-

culated (by setting h+ z = 0) as

ub(ξ1, ξ2, z, t) = ũ + (Ah)∇(∇ · (hũ))

+ (
B − 2A

2
h2)∇(∇ · ũ)

= ũ + (Ah)(DHU)!i

+ (
B − 2A

2
h2)(DU)!i

= (ub, vb) (4.187)

Here ub, vb are contravariant components in the image domain. They may be converted to

Cartesian components using (A.80) and (A.81).

4.6 Wet-Dry Algorithm

With the Boussinesq wave theory development in the past two decades, we have

greatly improved our modeling ability of wave dispersion and nonlinear wave wave in-

teractions. The motion of wave run up and rundown at a moving shoreline still remains

difficult to simulate. Important theoretical pursuits of wave motion on a plane sloping
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beach have been made by Carrier and Greenspan (1958), Tuck and Hwang (1972), Syno-

lakis (1987), Carrier et al. (2003) and Kanoglu (2004). In Carrier and Greenspan (1958),

a hodograph transformation using Riemann invariants of the hyperbolic system is used

to reduce the nonlinear shallow water wave equation to a single 2nd order linear equa-

tion. Two difficulties in the Carrier and Greenspan (1958) are present: a) derivation of

equivalent initial condition in the transformed coordinate for a given initial condition in

physical coordinate; b) derivation of solution for a particular time or a particular location.

The first difficulty is solved by Kanoglu (2004) using a linearized form of the hodograph

transformation and the second difficulty is solved by Synolakis (1987) using the Newton-

Raphson iteration algorithms. In Synolakis (1987), detailed measurements of solitary

wave run up are obtained. Tuck and Hwang (1972) used a slightly different transfor-

mation which gives equations that are easier to solve. Carrier et al. (2003) developed a

Green’s function solution using Tuck and Hwang (1972) transformation. The Carrier et al.

(2003) solutions are highly singular which also require numerical integration to obtain ar-

bitrary initial wave form propagation. Tadepalli and Synolakis (1994) presented N-wave

propagation investigations commonly seen in tsunami problems. These theoretical results

improved our understanding of wave run up processes. However, there are limitations

associated: a) theory is based on 1D flow; b) theory is based on perfect straight beach

c) only a non-breaking wave is considered. These limitations prevent their usage in real

engineering applications. For systems with complicated bathymetry and shoreline layout,

our modeling technique still relies on empiricism and suffers from numerical instabilities.

Extensive modeling skills are required to tackle the wetting and drying of domains.

Models that include wetting and drying treatment techniques can be seen in Tao

(1983, 1984), Falconer and Chen (1991) , Madsen et al. (1997), Buchard (1998), Hubbert

and McInnes (1999), Kennedy et al. (2000), Brufau et al. (2002), Lynett et al. (2002),

Xie et al. (2004) and Oey (2005). In Tao (1983, 1984), a slot technique is invented to

deal with the swash motion through permeable bed. The technique is further discussed
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by Madsen et al. (1997) and improved by Kennedy et al. (2000) and Chen et al. (2000).

The method is applicable to relatively gentle beaches with small amplitude incident wave.

Parameters involved in the model need calibration and spurious oscillations can be gener-

ated. In Hubbert and McInnes (1999), a comprehensive inundation scheme is developed

to model the rise and fall of coastal sea level due to tides and storm surges. In the Prince-

ton Ocean Model (POM), Xie et al. (2004) extended the Hubbert and McInnes (1999)

scheme by tracking the travel distance of flooding water in partially flooded computa-

tional cells and using an iterative mass rebalancing procedure to keep total water mass

conserved. This method is quite complicated to implement and the mass rebalancing pro-

cedure is applied uniformly to the whole system (uniform change of sea surface elevation

in the domain) which lacks a corresponding dynamic mechanism. In Oey (2005), a simple

wet and dry scheme is introduced into the POM model and analysis shows that bottom

friction effect on total water depth can be represented by an advection-diffusion equation.

For advection dominated shoreline change (hydraulic bores, wave breaking fronts), up-

wind discretization is necessary to avoid spurious oscillation in the solution. In Falconer

and Chen (1991), a wetting-drying check routine is developed for shallow water system

solved by ADI method. The scheme is quite stable but relatively hard to implement for

models not using ADI scheme.

In Buchard (1998) and the scientific documentation of GETM (General Estuarine

Transport Model), a simpler scheme is used by switching off some terms in the momen-

tum equations plus bed friction in a thin film layer added to dry bed areas. In Lynett et al.

(2002), a linear extrapolation method is proposed for discretization of spatial derivatives

involved in the Boussinesq equations. The method is equivalent to upwind scheme near

moving shoreline or methods using Lagrangian approach (Zelt, 1991). The procedure is

much easier than extensive wet-dry checking schemes. However, it still involves issues

such as which direction to extrapolate in 2D domain when complicated moving shorelines

exist.

103



v η

u

dry

wet

Figure 4.5: Wet-dry cells

In our approach, we use a relatively simple yet effective procedure. We modify

the approach by Buchard (1998) by using a) film layer in dry grid cells; b) bottom fric-

tion dependent on total water depth; c) a smooth switching-off for source terms (gravity,

nonlinearity, dispersion); d) label for dry and wet cells. In this method, no adding and

deleting of cells based on velocity direction is used. No abrupt changes of parameters

such as friction or gravitational acceleration are used. No checking of differentiation

direction or extrapolation direction is used.

Figure 4.5 shows a sketch of new wet-dry scheme. A roughness value δR (also

called film thickness) is defined for film thickness in dry areas. Labels IDwetdryu(i, j),

IDwetdryv(i, j) and IDwetdry(i, j) represent the status of wet or dry for u,v and z

points respectively, in which 1 is assigned for wet points and 0 is assigned for dry points.
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The bottom friction coefficient fb is calculated as

fb = fb0 +
1

exp(2( H
2δR

)2) − 1
(4.188)

where δR is a roughness value representing the thickness of the thin film layer and fb0 is

physical bottom friction coefficient. When total depth H → 0, the bottom friction ap-

proaches infinity. On the other hand, when H >> δR, the friction coefficient approaches

physical friction smoothly.

The assignment of wet/dry ID is given by

R1 = tanh[(
ln(max(Hmax,δR)

δR
)

κ
)2] (4.189)

IDwetdry(i, j) = int(R1 + 0.1) (4.190)

where Hmax = max(H(i, j), Hu(i, j), Hu(i+ 1, j), Hv(i, j), Hv(i, j + 1), i. e., the max-

imum depth of the four sides and the center of a grid cell, κ = 0.4 is Karman constant.

int() means taking the integer value. If IDwetdry(i, j) = 0, then IDwetdryu(i, j) = 0,

IDwetdryu(i + 1, j) = 0, IDwetdryv(i, j) = 0 and IDwetdryv(i, j + 1) = 0, i. e., the

sides of the cell are set to be dry only when the cell is set to be dry.

RHS terms of the momentum equations except the bottom friction are multiplied

by a coefficient Rf

Rf = tanh[(
ln(max(δR,H)

δR
)

κ
)2], (4.191)

where H = Hu(i, j) for momentum equation in ξ1 direction and H = Hv(i, j) for mo-

mentum equation in ξ2 direction. Gravitational acceleration g is also modified to be gRf .

Figure 4.6 shows the added friction fb − fb0 as a function of H/δR. Figure 4.7

shows the transition of R1 and IDwetdry from 0 to 1 as a function of Hmax/δR. Figure

4.8 shows the curve of Rf as a function of H/δR. We see that IDwetdry distinctly labels

a cell as wet when Hmax/δR is larger than 1.3. Rf turns off RHS terms smoothly when

H/δR is less than 2.
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The overall rationale behind these treatments are: a) presence of film layer makes

the discretization of equations uniform for all locations; b) strong bottom friction and

switching-off of gravity within the film layer will slow down the flow rate in the film

layer and prevent noise generation; c) wet/dry label can be used to assure zero velocity at

the shoreline.

Model results compared to analytical results will be shown in subsequent chapters.

107



Chapter 5

MORPHOLOGICAL SCHEMES

The central concern of morphodynamics is to determine the evolution of bed levels

for hydrodynamic systems such as rivers, estuaries, inlets, bays and other near shore

regions where fluid flow interacts with the supporting bed level intensively.

Numerical morphological models involve coupling between a hydrodynamic model

which provides driving forces and a sediment transport model which accounts for sedi-

ment flux and bathymetry change. Readers are directed to de Vriend et al. (1993), Nichol-

son et al. (1997) and Kobayashi & Johnson (2001) for examples of these models.

A large part of sediment transport formulas are based on energetics considerations,

for instance, Bagnold (1966), Bailard (1981) and Meyer-Peter-Müller (1948). For steady

or quasi-steady flow conditions, the transport rate of sediments is closely correlated to

third power of fluid velocities near bed. Because the flow field is a nonlinear function of

bed level and a number of other parameters, the transport rate is also a nonlinear function

of bed level and other parameters. Hence the sediment conservation equation is physi-

cally a nonlinear conservation equation for the bed level. The same situation occurs in

other physics contexts, such as mass conservation equation in hydraulics, density waves

in aerodynamics as well as congestion phenomena in highway or urban transportation

systems (Whitham, 1974). A common feature of these conservation laws is that shock

waves, i.e. discontinuities of the respective physical quantities, will develop when parti-

cle velocity approaches celerity. Several decades of research effort have been devoted to

modeling these shock waves numerically. Other important aspects of numerical methods

108



are stability and accuracy requirements. It is highly challenging to devise a numerical

scheme which satisfies accuracy and stability requirements for long term simulation.

As reviewed in Nicholson et al. (1997), many state-of-art morphodynamic mod-

els use classical shock capturing schemes for bed level simulation. For example, John-

son and Zyserman (2002) apply a second-order accurate modified Lax-Wendroff scheme

(Abbott, 1978). DH (Delft Hydraulics) model (Delft2D-MOR, Roelvink and van Ban-

ning, 1994; Roelvink et al., 1994) uses a FTCS (forward-time, central-space) explicit

scheme with corrections of the transport rate to compensate negative numerical diffusion

resulting from the scheme. The HR Wallingford model PISCES (Chesher et al., 1993)

uses a one-step Lax-Wendroff scheme. STC (Service Technique Central des Ports Mar-

itimes et des Voies Navigables) model uses a two-step Lax-Wendroff scheme (Tanguy

et al., 1993). UL (Civil Engineering Department of the University of Liverpool) model

(O’Connor and Nicholson, 1989, 1995) also uses a modified Lax-Wendroff scheme with

effects of gravity on the sediment transport rate. According to Hudson (2005), the Lax-

Wendroff scheme suffers from dispersion resulting in spurious oscillations occurring in

the numerical results. Various techniques, including flux-limiter methods, have been used

to try to eliminate the spurious oscillations. Unfortunately, spurious oscillations could not

be eliminated and overpowered the numerical results for long computational run times as

also pointed out by Damgaard and Chesher (1997) and Damgaard (1998).

In this research, a wave phase-resolving sediment transport model is proposed for

near shore applications where waves play an important role as driving force. The wave

orbital velocities are oscillatory in time and space, and the resulting sediment transport

fluxes are also oscillatory. It is difficult to obtain numerical estimate of local bedform

phase speed under these circumstances (See Appendix). This weakens morphological

schemes (such as Lax-Wendroff type of schemes) that require decent estimates of phase

speed. These complications make the demand for better schemes more urgent in bed level

prediction.
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In Hudson (2001), a variety of numerical schemes are discussed including mod-

ified versions of the Lax-Friedrichs (1954) scheme, the classical Lax-Wendroff scheme,

MacCormack (1969) scheme and the Roe (1986) scheme based on shallow water equa-

tion for hydrodynamics and simple power law for sediment transport rate. A flux-limited

version of the Roe scheme is found to be much more stable than Lax-Wendroff and Lax-

Friedrichs type schemes. The disadvantage is that the Roe scheme involves calculation of

eigenvectors for the so-called Roe averaged Jacobian matrix of the entire hydrodynamics

and morphology system. This is feasible for shallow water systems and simple power

law sediment transport rates for 1-D problems. The numerics become tedious and com-

plex for coupled systems of more comprehensive hydrodynamic models and sediment

transport models. 2-DH implementation of the Roe scheme will be practically difficult.

In this research, we investigate the stability and performance of several finite dif-

ference schemes. Comparisons are made to evaluate their applicability. The suggested

Euler-WENO scheme is also applied to a phase resolving sediment transport model to

study sand bar deformation under waves and bed level instabilities due to flow in a straight

channel.

We present the model schemes in Cartesian grids with uniform grid spacing for

the sake of convenience and clarity. Then we present the resulting Euler-WENO scheme

in generalized curvilinear coordinates.

5.1 Model Equation for Bed Elevation in Sediment Transport

Bed level changes are governed by the equation of conservation of sediment mass,

which can be written as

∂zb

∂t
= − 1

1 − np

(∇ · q +
∂

∂t

∫ η

zb

cdz) (5.1)

where zb(x, t) is the bed level elevation (defined positive upward relative to a fixed datum)

at each horizontal position x = (x, y) and time t, np is the bed porosity, q = (qx, qy)

is the total volumetric sediment transport rate, c(x, z, t) is the volumetric concentration
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of suspended sediments in the water column, η(x, t) is the free surface elevation. In the

following, we neglect a detailed examination of the suspended load contribution, since the

numerical instabilities to be considered are apparent in the reduced flux equation given by

∂zb

∂t
= − 1

1 − np

∇ · q (5.2)

The transport rate q is a complex function of various hydrodynamic quantities such as

currents, waves and water depth as well as quantities associated with sediment properties

such as sediment density and grain size. A number of formulas have been proposed for

calculating q in the literature. Some experimental data and theory show that q is closely

related to some power of near bed fluid velocity u (Grass, 1981, Van Rijn, 1984, 1993).

Only in the simplest case can q be written as a function of zb. Therefore, it is desirable

to have a morphology updating scheme that does not depend on a particular form of the

transport formula.

In this research, we consider the application of several modern shock-capturing

techniques to the calculation of bedform evolution in unidirectional streams or oscillatory

wave dominated flows.

Several one-dimensional examples are considered in order to evaluate the schemes

and illustrate their robustness, after which a two-dimensional example of alternating bar

instability in a unidirectional flow is considered. The schemes considered here are devel-

oped using finite differencing on a centered grid structure.

5.2 Classical Schemes for Shock Capturing

There are numerous finite difference schemes for spatial discretization and they

can be divided into two broad categories, namely, central difference schemes and up-

wind schemes. Each has its own advantages and disadvantages. Here, we present several

classical schemes that have been used in numerical simulation of hydrodynamics and

aerodynamics for shock capturing. As far as discretization in time, many techniques have

also been utilized in literature, such as simple Euler discretization, multi-level schemes,
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predictor-corrector schemes and so on. We mainly focus on one and two step methods in

time for sediment transport problems.

5.2.1 Central difference schemes

The simplest central difference scheme is the FTCS (forward in time, central in

space) scheme. The FTCS scheme is absolutely unstable for hyperbolic conservation

equations, but conditionally stable for convection diffusion problems. So, the central rem-

edy to FTCS scheme for equation (5.2) is to introduce viscous effects. The Lax-Wendroff

(1960) scheme and Lax family schemes are mostly adopted by practitioners of computa-

tional fluid dynamics. Here, we compare the Lax-Wendroff scheme, the Richtmyer (1962)

scheme and the MacCormack (1969) scheme.

The basic Lax-Wendroff scheme adopted in Johnson & Zyserman (2002) and in

the CBREAK model of Kobayashi & Johnson (2001) is given by

zb
n+1
i − zb

n
i

∆t
+

1

1 − np

(qn
i+1 − qn

i−1)

2∆x
=

∆tC2
i

2

(zb
n
i+1 − 2zb

n
i + zb

n
i−1)

∆x2
(5.3)

where the left hand side is a simple FTCS scheme, and right hand side is an additional dif-

fusion term which damps spurious oscillations caused by the FTCS scheme. Its accuracy

is second order in time and space. The stability condition for equation (5.3) is |Ci
∆t
∆x

| ≤ 1

where Ci is a ’bedform propagation phase speed’. Use of this scheme requires an estimate

of phase speed Ci, which is not very easy to estimate in many instances (see appendix).

Overestimate of Ci will over smooth the solution, while underestimate of Ci makes the

scheme less stable.

In order to avoid calculating Ci, various two-step Lax schemes have been pro-

posed. Here we examine the Richtmyer (1962) scheme and the MacCormack (1969)

scheme. The Richtmyer scheme is written as

zb
n+1/2
i =

zb
n
i+1 + zb

n
i

2
− ∆t

2∆x

1

(1 − np)
(qn

i+1 − qn
i ) (5.4)

zb
n+1
i = zb

n
i − ∆t

∆x

1

(1 − np)
(q

n+1/2
i − q

n+1/2
i−1 ) (5.5)
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and MacCormack scheme is written as

z̃bi = zb
n
i − ∆t

∆x(1 − np)
(qn

i − qn
i−1) (5.6)

zb
n+1
i =

zb
n
i + z̃bi

2
− ∆t

2∆x(1 − np)
(q(z̃b)i+1 − q(z̃b)i) (5.7)

The stability requirement of the Richtmyer scheme and the MacCormack scheme

is |Ci
∆t
∆x

| ≤ 1 (Ci is bed form phase speed) and accuracy is second order in time and

space. They require the calculations of sediment transport rate q at intermediate bed

level z
n+1/2
b and z̃b, and this requires recalculation of hydrodynamics which is costly in

computation.

The common disadvantage of the second order central difference schemes is that

strong spurious oscillations can be generated near shocks or steep fronts. Generally, fil-

tering and artificial viscosity have to be added to make them more stable. In Johnson &

Zyserman (2002), a filtering process suggested by Jensen et al. (1999) is used for the

Lax-Wendroff scheme. The disadvantage of using a filtering process is that one may have

difficulty deciding the number of filtering processes to be applied in practice.

5.2.2 Upwind schemes

Central difference schemes have higher order accuracy but more restrictive stabil-

ity requirement and tend to generate spurious oscillations. Upwind schemes, on the other

hand, are generally more stable due to inherent dissipation effects at the price of lower

order accuracy. Here we choose the simplest first order upwind scheme FTBS (forward

in time, backward in space) and the second order Warming-Beam scheme.

The FTBS scheme is written as

zb
n+1
i = zb

n
i − ∆t

2∆x(1 − np)
[(1 − α)(qn

i+1 − qn
i ) + (1 + α)(qn

i − qn
i−1)] (5.8)

with α = sign(Ci) This scheme is first order in time and space with strong dissipation.

The scheme is conditionally stable for |Ci
∆t
∆x

| ≤ 1, but has the disadvantage of widening

the shock region excessively.
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The Warming-Beam scheme adds a second order correction to the FTBS scheme,

which gives higher order accuracy but still upwinding to achieve conditional stability. It

can be expressed as:

zb
n+1
i = zb

n
i − ∆t

(1 − np)∆x
(q̂i+1/2 − q̂i−1/2) (5.9)

where

q̂i+1/2 =
1

2
(3qn

i − qn
i−1) −

1

2
Ci−1/2(q

n
i − qn

i−1) Ci+1/2 ≥ 0 (5.10)

q̂i+1/2 =
1

2
(3qn

i+1 − qn
i+2) −

1

2
Ci+3/2(q

n
i+2 − qn

i+1) Ci+1/2 < 0 (5.11)

and

q̂i−1/2 =
1

2
(3qn

i−1 − qn
i−2) −

1

2
Ci−3/2(q

n
i−1 − qn

i−2) Ci−1/2 ≥ 0 (5.12)

q̂i−1/2 =
1

2
(3qn

i − qn
i+1) −

1

2
Ci+1/2(q

n
i+1 − qn

i ) Ci−1/2 < 0 (5.13)

with Ci+1/2, Ci−1/2, Ci+3/2 and Ci−3/2 the bed level phase speed at respective locations.

Again, the second order correction requires knowledge of C which sometimes causes

difficulty.

5.3 Modern Schemes for Shock Capturing

5.3.1 WENO schemes

WENO (Weighted Essentially Non-Oscillatory) schemes are based on ENO (Es-

sentially Non-Oscillatory) schemes (Harten et al., 1983, 1987). The key idea of the ENO

scheme is to use the smoothest stencil among several candidates to approximate flux q at

cell boundaries (i± 1/2) to high order and at the same time to avoid spurious oscillations

near shocks or discontinuities. WENO schemes go one step further by taking a weighted

average of the candidate stencils. Weights are adjusted by local smoothness. More details

can be found in Liu et al. (1994), Jiang et al. (1999) and Shao et al. (2004). Here we give

a brief introduction for 1-D problem described by equation (5.2).
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The sediment transport rate q can be split into parts associated with bedform prop-

agation in positive x direction and in negative x direction, i.e., q+ and q−

q+ = (1 − np)
∫ zb

0
C+(z)dz, (5.14)

q− = (1 − np)
∫ zb

0
C−(z)dz, (5.15)

where C+ = max(C, 0) and C− = min(C, 0). C+ and C− stand for phase speed of bed-

form propagating in positive x direction and negative x direction respectively. Obviously,

C = C+ + C−, hence q = q+ + q−. WENO scheme gives the following formula for

approximating term dq
dx

dq

dx
=
q̂i+1/2 − q̂i−1/2

∆x
(5.16)

where the remaining problem is to estimate q̂i+1/2, which is an approximation of transport

rate q at grid location i + 1/2, and q̂i−1/2, which is an approximation of transport rate q

at grid location i − 1/2. Again, q̂i+1/2 can be split into left-biased-flux q̂−i+1/2 and right-

biased-flux q̂+
i+1/2

q̂i+1/2 = q̂−i+1/2 + q̂+
i+1/2. (5.17)

Here, the left-biased-flux is calculated as

q̂−i+1/2 = ω1q
1
i+1/2 + ω2q

2
i+1/2 + ω3q

3
i+1/2, Ci+1/2 ≥ 0 (5.18)

q̂−i+1/2 = 0, Ci+1/2 < 0 (5.19)

where

q1
i+1/2 =

1

3
qi−2 −

7

6
qi−1 +

11

6
qi (5.20)

q2
i+1/2 = −1

6
qi−1 +

5

6
qi +

1

3
qi+1 (5.21)

q3
i+1/2 =

1

3
qi +

5

6
qi+1 −

1

6
qi+2 (5.22)

are three candidate stencils for estimating q at grid location i + 1/2 with third order

accuracy (left-biased in the sense that 3 grid points i− 2 to i to the left of location i+1/2
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are used but only 2 grid points i+1 and i+2 to the right of location i+1/2 are used). ω1,

ω2 and ω3 are carefully chosen weights such that q̂−i+1/2 given by equation (5.18) is fifth

order accurate approximate of q at grid location i + 1/2 and near discontinuity no Gibbs

phenomena occur. The calculation of weights is given by Shao et al. (2004)

ω1 =
α1

α1 + α2 + α3

(5.23)

ω2 =
α2

α1 + α2 + α3

(5.24)

ω3 =
α3

α1 + α2 + α3

(5.25)

where

α1 =
0.1

(S1 + ǫ)2
(5.26)

α2 =
0.6

(S2 + ǫ)2
(5.27)

α3 =
0.3

(S3 + ǫ)2
(5.28)

with ǫ ≈ 10−6 a small number and

S1 =
13

12
(ν1 − 2ν2 + ν3)

2 +
1

4
(ν1 − 4ν2 + 3ν3)

2 (5.29)

S2 =
13

12
(ν2 − 2ν3 + ν4)

2 +
1

4
(ν2 − ν4)

2 (5.30)

S3 =
13

12
(ν3 − 2ν4 + ν5)

2 +
1

4
(3ν3 − 4ν4 + ν5)

2. (5.31)

Here, S1, S2 and S3 are called smoothness measurements and

ν1 = qi−2 (5.32)

ν2 = qi−1 (5.33)

ν3 = qi (5.34)

ν4 = qi+1 (5.35)

ν5 = qi+2. (5.36)
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Similarly, we can calculate right-biased-flux q̂+
i+1/2 (3 grid points to the right of grid loca-

tion i+ 1/2 are used and only 2 grid points to the left are used)

q̂+
i+1/2 = ω̃1q̃

1
i+1/2 + ω̃2q̃

2
i+1/2 + ω̃3q̃

3
i+1/2, Ci+1/2 < 0 (5.37)

q̂+
i+1/2 = 0, Ci+1/2 ≥ 0 (5.38)

q̃1
i+1/2 = −1

6
qi−1 +

5

6
qi +

1

3
qi+1 (5.39)

q̃2
i+1/2 =

1

3
qi +

5

6
qi+1 −

1

6
qi+2 (5.40)

q̃3
i+1/2 =

11

6
qi+1 −

7

6
qi+2 +

1

3
qi+3 (5.41)

ω̃1 =
α̃1

α̃1 + α̃2 + α̃3

(5.42)

ω̃2 =
α̃2

α̃1 + α̃2 + α̃3

(5.43)

ω̃3 =
α̃3

α̃1 + α̃2 + α̃3

(5.44)

α̃1 =
0.3

(S̃1 + ǫ)2
(5.45)

α̃2 =
0.6

(S̃2 + ǫ)2
(5.46)

α̃3 =
0.1

(S̃3 + ǫ)2
(5.47)

S̃1 =
13

12
(ν2 − 2ν3 + ν4)

2 +
1

4
(ν2 − 4ν3 + 3ν4)

2 (5.48)

S̃2 =
13

12
(ν3 − 2ν4 + ν5)

2 +
1

4
(ν3 − ν5)

2 (5.49)

S̃3 =
13

12
(ν4 − 2ν5 + ν6)

2 +
1

4
(3ν4 − 4ν5 + ν6)

2. (5.50)

and ν6 = qi+3 in addition to equations following (5.32).
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Left-biased-flux q̂−i−1/2 and right-biased-flux q̂+
i−1/2 for location i − 1/2 can be

calculated using the upper equations by simply shifting i backward for one step.

Finally, a simple Euler explicit scheme for temporal discretization can be used

for updating zb, thus, the full finite difference equation here called Euler-WENO scheme

becomes

zb
n+1
i − zb

n
i

∆t
+

1

1 − np

q̂i+1/2 − q̂i−1/2

∆x
= O(∆t,∆x5) (5.51)

We remark that the upper Euler-WENO scheme still need information of phase

speed Ci+1/2 and Ci−1/2, but it’s less restrictive than Lax-Wendroff scheme and Warming-

Beam scheme, for here, only the sign of Ci±1/2 is needed to judge the “wind” direction.

Because WENO scheme is a nonlinear scheme in the sense that the coefficients w1, w2

andw3 depend on the transport rate q adaptively rather than being constants, no theoretical

stability criterion is available.

5.3.2 TVD schemes

TVD (Total Variation Diminishing) schemes are designed such that the total vari-

ance of the solution TV =
∫ +∞
−∞ |∂zb

∂x
|dx will remain constant or only decrease in time.

During the solution process, there will be no new extrema generated. Some classical

schemes satisfy the TVD condition automatically, for instance the Lax-Friedrichs (1954)

scheme. Harten (1983) proposed a first order TVD scheme and a second order TVD

scheme. Later, many TVD schemes have been proposed based on existing schemes. For

example, the Lax-Wendroff scheme has been improved to have the TVD property and is

called TVD-LW scheme (Zhou and Adewumi, 2000). The MacCormack scheme has also

been modified to be the TVD-MC scheme (Mingham et al., 2000) such that it also has

TVD feature. For more details, please refer to Delis et al. (1998). In this research, we fol-

low Shu & Osher (1988) and Shao et al. (2004) to apply a TVD-Runge-Kutta (TVD-RK)

scheme for third order time integration of equation (5.2). The TVD-Runge-Kutta scheme

(Shu & Osher 1988) is a five step algorithm with the following sequence of steps:
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The first step is an Euler forward step to get time level n+ 1

zn+1
b − zn

b

∆t
+ [

1

1 − np

q(zn
b )]x = 0 (5.52)

The second step is a second forward step to time level n+ 2

zn+2
b − zn+1

b

∆t
+ [

1

1 − np

q(zn+1
b )]x = 0 (5.53)

The third step uses an averaging step to obtain an approximation solution at n+1/2

z
n+1/2
b =

3

4
zn

b +
1

4
zn+2

b (5.54)

The fourth step uses a third Euler step to get time level n+ 3/2

z
n+3/2
b − z

n+1/2
b

∆t
+ [

1

1 − np

q(z
n+1/2
b )]x = 0 (5.55)

For the fifth step, use another averaging step finally to get solution at time level

n+ 1

zn+1
b =

1

3
zn

b +
2

3
z

n+3/2
b (5.56)

where the WENO scheme is used for the spatial discretization. This scheme gives third

order accuracy O(∆t3) in time and fifth order accuracy O(∆x5) in space. In the second

step and the fourth step, the transport rate q has to be recalculated. It is relatively easy

for the Gaussian hump test case in the next section, but it can be costly if more calls to

hydrodynamic modules have to be made.

5.4 Euler-WENO Scheme for Generalized Coordinate System

Bottom elevation equation (5.2) can be written in curvilinear coordinate as

∂zb

∂t
= − 1

1 − np

∇ · q = − 1

1 − np

1√
g0

∂

∂xi
(
√
g0q

i) (5.57)

where qi is contravariant component of volumetric transport rate. The WENO reconstruc-

tion of left-biased flux and right biased flux are kept the same as (5.18) and (5.37) except
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that q is replaced by
√
g0q to include the effect of grid density change in curvilinear grid

system. Separate WENO fluxes are constructed for sediment transport in ξ1 direction

contravariant component q1 and ξ2 direction contravariant component q2 of total transport

vector q = q1g1 + q2g2 = (q1, q2). The whole Euler-WENO scheme in 2D curvilinear

coordinate (ξ1, ξ2) becomes

zb
n+1
i,j − zb

n
i,j

∆t
+

1

(1 − np)
√
g0i,j

(q̂1
i+1/2 − q̂1

i−1/2)

∆ξ1

+
1

(1 − np)
√
g0i,j

(q̂2
j+1/2 − q̂2

j−1/2)

∆ξ2

= O(∆t,∆ξ5
1 ,∆ξ

5
2) (5.58)

where q̂1
i+1/2 and q̂1

i−1/2 are WENO constructions of
√
g0q

1 at location (i + 1/2, j) and

(i− 1/2, j) respectively; q̂2
j+1/2 and q̂2

j−1/2 are WENO constructions of
√
g0q

2 at location

(i, j + 1/2) and (i, j − 1/2) respectively. The construction process is identical to (5.18)

and (5.37) except that here we need to include
√
g0.

5.5 Morphology Updating Scheme Tests

We use a Gaussian hump case to test the schemes described above to discuss their

performance on modeling morphological change due to currents. Next, we investigate the

developments of sand bars in a 1D system due to waves using the Euler-WENO scheme.

This case was also studied by Yu and Mei (2000). Finally, Deformation of a 2D alternating

sand bar system is studied using a 2D shallow water model and the Euler-WENO scheme

to verify its applicability in multi-dimensional problems.

5.5.1 Numerical Simulation Results and Comparisons for a Gaussian Hump Test

In this section, we will apply different schemes to the Gaussian hump test case

of Johnson and Zyserman (2002) and Hudson (2005). Assuming the transport rate q is
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a power function of current speed (Grass, 1981; Van Rijn, 1984, 1993), and assuming a

steady current with a rigid-lid, we have

q = aub (5.59)

u = Q/h (5.60)

h = s− zb (5.61)

where a, b are constants, h is the water depth, s is the datum which can be set to s = 0,

andQ is the constant volume flux. Following Johnson & Zyserman (2002), equation (5.2)

can be written as

∂zb

∂t
+ C(zb)

∂zb

∂x
= 0 (5.62)

where C(zb) is the phase speed of bedform, and is expressed as

C(zb) =
1

1 − np

∂q

∂zb

=
1

(1 − np)(s− zb)
abub (5.63)

C(zb) is a function of zb, and hence equation (5.62) depicts a nonlinear propagation of

the bed level zb(t, x). In most real applications, C is not as simple as a relation to zb as

above, and it can’t be easily estimated (see appendix). This gives difficulty in numerical

schemes that require a decent estimate of C.

The following quantities are specified to similar to values in Hudson (2005)

a = 0.001s2/m (5.64)

b = 3.0 (5.65)

Q = 10m2/s (5.66)

np = 0.4 (5.67)

and the initial condition zb(x, 0) is given as a Gaussian hump,

zb(x, 0) = −h0 + 2.0e[−β(x−xc)2]m (5.68)
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Figure 5.1: Initial bed level zb of Gaussian hump test
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with β = 0.01m−2, h0 = 6.0m, 0 ≤ x ≤ 300m, xc = 150.0(m is the center of the

Gaussian hump (See Figure 5.1). During the simulation, grid spacing is chosen to be

∆x = 1m, and time step is chosen to be ∆t = 0.1s which is sufficiently small to satisfy

stability conditions for the finite difference schemes.

Figure 5.2, Figure 5.3 and Figure 5.4 show results of the Lax-Wendroff scheme,

the Richtmyer scheme and MacCormack scheme which are all based on central differ-

ences. Figure 5.5 shows the comparison of the Lax-Wendroff scheme, the Richtmyer and

the MacCormack scheme with the exact solution obtained using characteristics according

to (5.62) or (Hudson et al., 2005) for time t = 600s when the shock wave of bed level

starts to form. From the figure, the Lax-Wendroff scheme, the Richtmyer and the Mac-

Cormack scheme all generated oscillations at the shock front. The oscillations at the front

become quite apparent at t = 1000s and the solutions break down after that, generating

large errors due to dispersive effects.

Figure 5.6a) and 5.6b) show the results of Lax-Wendroff scheme along with the

filtering process of Johnson and Zyserman (2002) used once every 100 time steps. In

figure 5.6b), bed level at time 0s, 2000s, 4000s, 6000s, 8000s, 10000s are plotted together

from the left to the right. We see that compared to Figure 5.2, it is more stable, and it does

predict the bar migration, but there are oscillations generated at the shock location and

the width of the front is not very well resolved.

Figure 5.7 and Figure 5.8 show results of the FTBS scheme and the Warming-

Beam scheme. In this case, both schemes seem to be stable, but the Warming-Beam

scheme generated some oscillations. Both of them has a shock front width about 5 grids

wide, which is due to the strong damping effect of the schemes. A small yet visible

negative peak also forms in front of the shock in the Warming-Beam scheme simulation.

Figure 5.9 shows the results compared to analytical solution at t = 600s. It is seen that

the FTBS scheme is more dissipative compared to the Warming-Beam scheme and the

Lax-Wendroff scheme with filtering.
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Figure 5.2: Simulation of Gaussian hump evolution using the Lax-Wendroff scheme.
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Figure 5.3: Simulation of Gaussian hump evolution using the Richtmyer scheme.
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Figure 5.4: Simulation of Gaussian hump evolution using the MacCormack scheme.
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Figure 5.5: Comparison of the model results with the analytical results at t = 600s;
Lax-Wendroff scheme (stars), Ritchmyer scheme (triangles); MacCormack

scheme (circles); analytical (solid line)
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Figure 5.7: Simulation of Gaussian hump evolution using the FTBS scheme.
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Figure 5.8: Simulation of Gaussian hump evolution using the Warming-Beam scheme
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Figure 5.9: Comparison of the model results with the analytical results at t = 600s;
FTBS (stars), Warming-Beam scheme (triangles); Lax-Wendroff scheme

with filtering (circles); analytical (solid line)
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Figure 5.10: Simulation of Gaussian hump evolution using the Euler-WENO scheme.

Figure 5.10 and Figure 5.11 shows results of Euler-WENO scheme and TVD-

RK-WENO scheme. Figure 5.12 shows the comparison of Euler-WENO scheme and

TVD-RK-WENO scheme with the analytical solution at t = 600s. Here, both schemes

have predicted fairly stable results with the shock front depicted in high resolution. Figure

5.13 shows the results at time 0s, 2000s, 4000s, 6000s, 8000s, 10000s from left to right.

The TVD-RK-WENO scheme is about 3 times slower than Euler-WENO scheme, while

the results are quantitatively very close to the Euler-WENO scheme. Hence, we conclude

that for sediment transport problems, Euler-WENO scheme is preferred.
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Figure 5.11: Simulation of Gaussian hump evolution using the TVD-RK-WENO

scheme.
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Figure 5.12: Comparison of the model results with the analytical results at t = 600s;
Euler-WENO scheme (stars); TVD-RK-WENO scheme (triangles); analyt-

ical (solid line)
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Figure 5.13: Comparison of the model results of the Euler-WENO scheme (dash) with

the TVD-RK-WENO scheme (solid) at time t = 0s, t = 2000s, t = 4000s,
t = 6000s, t = 8000s and t = 10000s from the left to the right
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All of the schemes tested here have been checked for volume conservation. Ex-

pressing the total volume of sand relative to datum as

V (t) =
∫ ∞

−∞
zb(x, t)dx (5.69)

we compute a relative error (V (t) − V (0))/V (0) for each of the schemes. Figure 5.14

shows the relative error over time due to different schemes. All of the schemes are seen to

be essentially conservative for the 10,000s of simulated time, with relative errors falling

in the range of numerical roundoff.

5.5.2 Application of the Euler-WENO scheme to sand bar deformation due to waves

Periodic rows of sandbars can strongly reflect surface waves with twice the wave-

length of the bar features through a process known as Bragg scattering (Mei, 1985). Par-

tial reflection of waves by a finite patch of bars creates a partial standing wave on the

upwave side of the bars. This perturbation to the incident wave field has been shown to

effectively promote the formation of new bars in an initially level sand bed (Rey et al.,

1995). However, Yu and Mei (2000) have shown that the sediment transport mechanisms

over an existing bar itself are destructive, leading to erosion of bar crests and infilling of

bar troughs. As a result, an evolving bar field would appear to march seaward over a flat

bottom, with bars progressively growing on the seaward end and eroding at the landward

end. This conclusion ignores the possible influence of partial standing waves in the re-

gion landward of the initial bar field, which would be a possible realistic complication if

a reflective shore were present.

In this section, we apply the Euler-WENO scheme to investigate sand bar defor-

mation under surface waves. The coupled evolution of bars and waves has been studied

theoretically and experimentally by Yu and Mei (2000). When wavelengths of bars and

waves are comparable, the bars are controlled by a forced diffusion process due to par-

tially standing wave groups and gravity. In Yu and Mei (2000), wave field is solved based
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on equations for incident and reflected wave amplitudes. The sediment transport rate is

calculated by empirical bottom shear stress related to near bottom orbital velocity.

In the present study, we use the linearized Boussinesq equations to obtain the

instantaneous wave field. The fluid particle velocity adjacent to the bottom wave bound-

ary layer is obtained using the quadratic vertical variation of horizontal flow assumed in

Boussinesq wave theory. The bottom shear stress is obtained by solving for the turbulent

wave boundary layer with mixing length closure (Long et al., 2004). Diffusion due to

gravity is not included in this model, which will result in larger growth rate of bars than

seen in Yu and Mei (2000). We also point out that since the wave simulation, bed shear

stress calculation and sand transport rate calculation are different both in formulation and

parameters, the predicted bar morphology is not deforming quantitatively at the same rate

as Yu and Mei (2000).

The sediment transport is assumed to be dominated by bedload calculated using

Meyer-Peter and Müller (1948) type formula

Ψ(x, t) = C1(θ − θc)
n (5.70)

where Ψ is defined as Ψ = q(x, t)/(d
√

(s− 1)gd), q(x, t) is volumetric transport rate, d

is sediment diameter, g is gravitational acceleration, s = ρs/ρ is specific gravity of sedi-

ments, θ = τb/(ρ(s− 1)gd) is the Shields parameter, and θc is threshold value of Shields

parameter for initiation of sediment transport, C1 and n are determined empirically.

The bed elevation is simulated using the Euler-WENO scheme instantaneously.

Here we consider the sandy bed evolution with pre-existing bars as also studied in Yu and

Mei (2000). Initially, six sinusoidal sand bars are present in region 0 < x < 6π/k with

bar amplitude equal to near bottom excursion amplitude Ab, wavelength of bars equal to

half of wavelength of waves. The sea bed is initially flat elsewhere. Still water depth at the

flat bed is h = 7m. Waves are introduced to the system from left boundary x = −25/k

with wave amplitude A0 = 0.5m, wave period T = 8s and k being the incident wave
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Figure 5.15: Initial bed level (red) and still water surface level (blue)
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Figure 5.16: Bed level (b, f, d, h) and surface wave envelop (a, c, e, g) at different times.

number (Figure 5.15). Waves are absorbed at the right boundary x = 25/k such that

reflected wave energy from right boundary is nearly zero.

With the information given, we have Ab = A0/ sinh(kh) = 0.64m. The time step

of the simulation is chosen to be ∆t = 0.05s for waves and morphology. The spatial grid

size is ∆x = 2m. Other parameters are ρs = 2650kg/m3, sediment diameter d = 0.4mm,

still bed porosity np = 0.3, C1 = 11.0, n = 1.65.

Figure 5.16 shows the surface elevation wave groups and the bed level at 4 chosen

times. Figure 5.17 shows the entire bed level change with respect to time.

According to Yu and Mei (2000), because initially each of the bar crests is upwave

of a wave node by π/4 and downwave of the next antinode by π/4 (Figure 5.16 a) and b)),
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Figure 5.17: Bed level change with respect to time.
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the Bragg scattered waves deposit sand into the initial bar troughs and erode the initial

bar crests. Hence the bars will be be flattened by their scattered waves. New sand bars

will grow offshore of the initial bars and their growth rate will be reduced as initial bars

are diminishing. From figure 5.16, the above expectations are qualitatively confirmed.

The growing bars on the left have larger growth rate due to the fact that waves are better

sheltered on the right. Figure 5.16 and Figure 5.17 demonstrated that the Euler-WENO

scheme is stable and may be used in phase resolving sediment transport models.

We also point out that since the wave simulation, bed shear stress calculation and

sand transport rate calculation are different both in formulation and parameters, the pre-

dicted bar morphology is not deforming quantitatively at the same rate as predicted by Yu

and Mei (2000).

5.5.3 Application of the Euler-WENO scheme to 2D channel stability problem

For 2D problems, the Euler-WENO scheme can be applied component-wise. In

this section, we investigate the bed stabilities in a channel. The development of alternate

bars in straight channels was investigated analytically by Colombini et al. (1987) based

on a linear and weakly nonlinear stability analysis. It is shown that the initial perturba-

tions of bed form will grow and reach an equilibrium amplitude, and the development of

higher harmonics tends to cause diagonal fronts with high downstream steepness. Schie-

len et al. (1993) show that the nonlinear evolution of the envelope amplitude of the group

of marginally unstable alternate bars satisfies a Ginzburg-Landau equation and periodic

bar pattern can become unstable, exhibiting quasi-periodic behavior for realistic physical

parameters and a dune covered channel bed. For increasingly unstable bars, however,

pronounced oblique shocks develop in the alternating bar pattern (Chang et al., 1971).

Güngördü and Kirby (2001) studied the evolution of oblique shock structures using a

pseudo-spectral scheme based on the hydrodynamic model of Özkan-Haller and Kirby

(1997). The pseudo-spectral results were similar to the results shown below in Figure

142



5.18, but were often contaminated by the presence of oscillations at the point of most

rapid depth change in the down-channel direction, adjacent to channel side walls.

In this study, the channel geometry is defined as bounded by two straight walls

at left (x = 0) and right (x = Lx) respectively. The flow is primarily introduced by

gravitational force in y direction. Initial channel bed level perturbations are given to

investigate bedform instabilities. The average water depth is h0. The governing equations

for the flow field are

∂h

∂t
+
∂P

∂x
+
∂Q

∂y
= 0 (5.71)

∂P

∂t
+
∂P 2/h

∂x
+
∂PQ/h

∂y
+ gh

∂h

∂x
= −gh∂zb

∂x
− fb

√

(P 2 +Q2)P

8h2
(5.72)

∂Q

∂t
+
∂PQ/h

∂x
+
∂Q2/h

∂y
+ gh

∂h

∂y
= −gh∂zb

∂y
− fb

√

(P 2 +Q2)Q

8h2
+ i0gh (5.73)

where h(x, y, t) is total water depth, (P,Q) is depth integrated water volume flux per unit

width, i0 is the slope along the channel, fb is bottom friction coefficient.

The transport rate formula used here is

q = ν0|u|b(
u

|u| − γ′∇zb) (5.74)

where u = (P/h,Q/h) is the depth averaged velocity, ν0, b and γ′ are empirical.

Periodic boundary conditions are employed in y direction. The computational

domain is 0 < x < Lx and 0 < y < Ly. Initial bed level is given as

zb(x, y, t = 0) = a0 cos(k1x) cos(k2y) (5.75)

Initial condition of the flow field is taken as still water (P = 0, Q = 0, h = h0 −
zb(x, y, t = 0))

The standard ADI (Alternating-Direction Implicit) scheme is implemented to solve

the flow field, and the Euler-WENO scheme is used to update zb for the flow field calcu-

lation of the next time step

zb
n+1
i,j − zb

n
i,j

∆t
+

1

1 − np

q̂xi+1/2,j − q̂xi−1/2,j

∆x
+

1

1 − np

q̂yi,j+1/2 − q̂yi,j−1/2

∆y
= O(∆t,∆x5,∆y5)

(5.76)
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where (i, j) is grid location and q̂x and q̂y are x and y component of the WENO recon-

structed sediment transport rate q at (i± 1/2, j) and (i, j ± 1/2) respectively.

In the computation, the channel geometric parameters and the flow parameters are

chosen such that the flow is subcritical, and depth averaged velocity |u| is about 1m/s.

The selected parameters are h0 = 5m, i0 = 6.11 × 10−5, fb = 0.024, ν0 = 0.7, b = 6,

γ′ = 0.1, Lx = 220m, Ly = 1310m, k1 = π/Lx, k2 = 2π/Ly, a0 = 1m, np = 0.3.

Uniform spatial steps are used with ∆x = ∆y = 10m. Time step of ∆t = 10s is used.

The bed evolution in the channel is shown in Figure 5.18. The flow becomes fully

developed rapidly. The bed level changes in a much slower time scale as expected. After

3 hours, the initial symmetric sinusoidal bed level has changed to be obliquely oriented.

The crests start to grow and pitch forward in the flow direction, and the troughs become

deeper and pitch against the flow direction. The distance between the contours indicate

the gradient of the bed level is changing. These developments become more evident after

10 hours. The bed form is also moving along the flow direction. After 17 hours, the

bed form becomes stable, crests and troughs are distributed as alternating bars. Similar

patterns are also obtained by Güngördü and Kirby (2001).

Although more detailed experimental results are required to test the model mor-

phology, the application of Euler-WENO scheme for morphology updating is computa-

tionally stable and successful.
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Figure 5.18: Bed evolution of a straight channel (arrow: flow field u, averaged velocity

about 1 m/s; contour: bed level)
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Chapter 6

BOTTOM BOUNDARY LAYER SOLUTIONS

In this chapter, we focus on the solution of wave boundary layer in the time do-

main. The models in this research use numerical methods to solve turbulent wave bound-

ary layer to obtain instantaneous bottom shear stress. We first list some analytical so-

lutions of oscillatory boundary layer. Then, a finite difference method is used to solve

2DHV (horizontal and vertical dimensions) vertical and 3D boundary layer structure. Fi-

nally we test the 2DHV bottom boundary layer model using some analytical results and

measured data.

6.1 Analytical Solutions of Oscillatory Boundary Layer Flows

In this section, a few important analytical solutions for oscillatory boundary layers

are summarized briefly.

(1) Oscillating infinite plate (Stokes, 1851)

For a laminar flow introduced by an oscillating infinite plate, with oscillation ve-

locity u(z = 0, t) = a cos(ωt) parallel to the plate plane, we have the following solution

(Stokes, 1851)

u(x, z, t) = ae−βz cos(ωt− βz), (6.1)

where z is distance from the plate, β =
√

ω
2ν

, and ν is constant kinematic viscosity. The

shear stress on the plate becomes

−ρν[∂u
∂z

]|z=0 = ρν
√
ωa cos(ωt+

1

4
π). (6.2)
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We see that the shear stress has a 1
4
π lead to the plate motion.

(2) Laminar linear wave boundary layer solution (Stokes, 1847)

For a 1-D linear sinusoidal boundary layer on flat bottom, with free stream velocity

and free surface elevation given by

U =
H

2
ck

1

sinh(kh)
cos θ ≡ U1 cos(θ) (6.3)

W = 0 (6.4)

η =
H

2
cos θ, (6.5)

where θ = kx − ωt, H is wave height, ω is wave angular frequency, k is wave number

which satisfies linear wave dispersion ω2 = gk tanh(kh), c = ω/k and h is still water

depth, we have the following first order laminar bottom boundary layer solution

u(x, z, t) = U1 cos(θ) − U1e
(−βz) cos(θ − βz), (6.6)

where U1 = H
2 sinh(kh)

ck, z is vertical coordinate from bottom. Vertical velocity w can be

calculated by w = − ∫ z
0 uxdz:

w(x, z, t) = −U1k

β
[βz sin θ +

1√
2
(e−βz cos(θ − βz +

π

4
) − cos(θ +

π

4
))] (6.7)

This vertical velocity does not match the outer solution when z → ∞, which indicates that

the boundary layer flow will affect the outer flow and a two-way coupling (matching) is

warranted for fully matched solution. Extended version of the solution that does account

for the effect of the vertical velocity on the progressive wave can be obtained by applying

bottom boundary condition ww +wr = 0 where ww is the irrotational vertical velocity due

to waves and wr is the velocity field due to the rotational viscous boundary layer. This

will lead to modification of the linear wave dispersion relationship and damping of the

progressive wave field.

Shear stress is τ(x, z, t) = ρν ∂u
∂z

, i.e.

τ(x, z, t) = ρνβU1e
−βz

√
2 cos(θ − βz + π/4) (6.8)
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Bottom shear stress is

τb(x, t) = τ(x, z = 0, t) =
√

2ρνβU1 cos(θ + π/4). (6.9)

The bottom shear stress has a π/4 phase lead over the free stream velocity U .

(3) Turbulent linear wave boundary layer (Trowbridge and Madsen, 1984)

For turbulent wave boundary layer, Trowbridge and Madsen (1984) showed that

close to the boundary (z << δ, where δ is boundary layer thickness), the turbulent eddy

viscosity can be represented by

νt = κzu∗ (6.10)

where u∗ is friction velocity defined by u∗ =
√

|τb/ρ|, and the velocity field can be

represented by steady turbulent flow (Townsend, 1976)

u(x, z, t) =
u∗sign(τb)

κ
ln(

z

Ks/30
) (6.11)

where Ks is equivalent Nikuradse roughness and κ = 0.41 is the von Karman constant.

Trowbridge and Madsen (1984) also argued that (6.10) is unrealistic when bottom shear

stress vanishes. A modified eddy viscosity model is used to incorporate both temporal

variation and a non-vanishing eddy viscosity when close to the boundary, i.e.

νt = ν0(z)Re[1 + a(2)ei2θ] (6.12)

and

ν0 = κu∗











z 0 ≤ z ≤ δ1

δ1 z ≥ δ1
, (6.13)

where δ1 is a constant to be calibrated, u∗ is averaged u∗ over a wave period, a(2) =

2e−i2θu∗ and θ = ωt − kx. Since the turbulent eddy viscosity is piece-wise continuous

here, solutions have to be matched at the interface z = δ1, and this is given by Trowbridge

and Madsen (1984) in a Fourier series and it is not repeated here. The above theory is

an important result for turbulent wave boundary layer research, but it is based on mono-

chromatic waves. Further extensions of this model are produced by Foster et al. (1999)
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and Zou (2002). Eddy viscosity for arbitrary free stream velocity and pressure driven

boundary layer flow can be obtained from more detailed models such as k − ǫ models.

6.2 Numerical Solutions Using Finite Difference Method

In this section we discuss finite difference method for solving the vertical structure

of laminar and turbulent wave boundary layer for both 2DHV (horizontal and vertical

dimensions) and 3D cases.

6.2.1 Free stream velocity and pressure

The bottom boundary layer flow is driven by the free stream flow and pressure

gradient. From (2.106), (2.107) and (2.108), we obtain the free stream velocity ub, wb

and pressure pb by setting ξ = 0 (to the second order of dispersion)

ub = ũ + {Ah(∇F21 + 2∇hF22) +Bh2∇F22} (6.14)

wb(x, y, t) = −F21 (6.15)

pb(x, y, t) = pa + ρgH

− ρ{HF21t +H2F22t

+ ũ · [∇F21H + ∇F22H
2 + 2F22∇hH]} (6.16)

The bottom dynamic pressure becomes

pbd ≡ pb − (pa + ρgh)

= ρg(H − h)

− ρ{HF21t +H2F22t

+ ũ · [∇F21H + ∇F22H
2 + 2F22∇hH]} (6.17)
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6.2.2 2DHV boundary layer solution

We use coordinates (x, y, z) with z upward from the bottom and x, y for horizontal

directions. The gradient of the bottom is assumed to be too small to be felt by the local

boundary layer.

Here we adopt the work presented by Hsu et al. (2004) to model the flow in

the wave boundary layer. The time dependent boundary layer equations are derived us-

ing boundary layer approximations from Reynolds-Averaged Naiver-Stokes equation and

continuity equation:

∂u

∂x
+
∂w

∂z
= 0 (6.18)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂pbd

∂x
+

1

ρ

τzx

∂z
(6.19)

Following Hsu et al. (2004), ∂
∂x

is transformed to −1
c

∂
∂t

for permanent form pro-

gressive waves nearshore, so that the upper equations become 1-D vertical in space which

simplifies the problem enormously:

∂w

∂z
=

1

c

∂u

∂t
(6.20)

∂u

∂t
− u

c

∂u

∂t
+ w

∂u

∂z
= −1

ρ

∂pbd

∂x
+

1

ρ

τzx

∂z
(6.21)

which is slightly different from Hsu et al. (2004), since the pressure gradient term is not

transformed. It is available directly from the Boussinesq model as a constant driving force

through the boundary layer in vertical direction.

Turbulent Reynolds stress is essential for phase-lag effects, which are suspected to

be important mechanism for sediment transport under asymmetric waves (Nielsen et al.,

2002). However, Bailard (1981) sediment transport model or other free-stream velocity

based parameterizations left out these effects. In present work, a turbulent eddy viscosity

νt is used

τzx = ρ(νt + ν)
∂u

∂z
(6.22)
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with νt given by mixing length theory or k − ǫ model (Justesen, 1988, Hsu et al., 2004).

For mixing length theory, the eddy viscosity is taken as

νt = κ|u∗|min(z, 0.3z0) (6.23)

with u∗ being the instantaneous friction stress estimated by assuming log law of the flow

close to bed when z = ∆z, κ = 0.40 being the Karman constant. For smooth wall

turbulence, the log law is (Schlichting, 1968)

|u(z, t)|
|u∗|

=
1

κ
ln(

|u∗|z
ν

) + 5.1 (6.24)

and the solution this equation for |u∗| requires iteration methods. For rough wall turbu-

lence, the log law is (Trowbridge and Madsen, 1984; Foti and Scandura, 2004; Mellor,

2002; Hsu et al., 2004)

|u(z, t)|
|u∗|

=
1

κ
ln(

z

Ks/30
). (6.25)

z0 is the maximum of wave boundary layer thickness, Ks is a roughness height specified

as proportional to particle diameter d, ∆z is the grid size for numerical discretization1.

Alternatively, νt can be obtained more accurately from a 2-equation k − ǫ turbulence

model. For details about k − ǫ model, see Hsu et al. (2004), Mellor (2002), Foti and

Scandura (2004) and Rodi (1993).

The boundary conditions are:

u(x, z, t)|z=∞ = ub(x, t) (6.26)

w(x, z, t)|z=∞ = wb(x, t) (6.27)

u(x, 0, t) = w(x, 0, t) = 0 (6.28)

τ(x, z, t)|z=∞ = 0 (6.29)

1 Note that a distorted grid system with fine grids near the wall and coarse grids near

the outer edge can be used for better resolution. Nevertheless, we use uniform girds

here for simplicity.
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The boundary layer equations (6.20) and (6.21) are solved numerically using finite

difference method in time and space. Explicit schemes can be used to solve the equations,

but the computation time is quite large due to small time step required for numerical

stability. We here choose to use the well established Crank-Nicholson scheme (2nd order

in time and space) to solve the diffusion and advection equation (6.21).

We will find that the boundary equation of vertical velocity w (6.27) is not satis-

fied, i. e. w solved from continuity equation (6.18) or (6.21) does not match free stream

vertical velocity (6.15) at the outer edge of the boundary layer due to two reasons: a)

Boussinesq theory does not take account of the alteration to the wave form due to the

bottom boundary layer vertical velocity pumping effects; b) Here we assume the bottom

boundary layer local field do not feel the gradient of bed level. Rather, we only discuss the

effects of free stream velocity and pressure gradient on boundary layer, while neglecting

the feed back of boundary layer effects to the outer flow. For boundary layer flow with

the consideration of bottom gradient and curvature, it is difficult to solve efficiently using

numerical methods due to the complexity of the geometry. Some of the aspects of the

feedback of bottom boundary layer vertical velocity to the outer flow have been discussed

in Liu and Orfila (2004) for ideal cases such as solitary wave damping due to bottom

boundary layer.

With all the assumptions discussed above, the equations are still difficult to solve

since that the upper boundary is placed at infinity. In reality, the boundary condition

should be placed at the outer edge of the boundary layer which defines the thickness

of the instantaneous boundary layer flow. The thickness of boundary layer can not be

estimated a priori. The inclusion of an unknown boundary condition location causes more

difficulty in obtaining a numerical solution. One could use a shooting-method to calculate

the thickness of the boundary layer, where we could place the outer boundary condition

at a certain distance z0 from the bed level, calculate boundary layer flow, and then check

if the boundary condition is satisfied. If not, we can modify the distance z0 and do the
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Figure 6.1: Vertical discretization grids for boundary layer

calculation again until the boundary condition is satisfied to a designated accuracy. This

shooting-method takes iterations to complete, and the cost of computation time is quite

demanding. An alternative way is to specify z0 far enough from the bed level, so that the

boundary layer effects is always negligible and the iterations for z0 are not necessary. But

a large z0 will require more grid points in the vertical direction. In the numerical methods

discussed below, we choose to use the latter method.

6.2.2.1 Linear wave boundary layer

For linear wave boundary layer, we entirely neglect the vertical velocity w and the

convection u∂u
∂x

. The momentum equation (6.19) becomes:

∂u

∂t
= −1

ρ

∂pbd

∂x
+

1

ρ

∂

∂z
[ρ(ν + νt)

∂u

∂z
] (6.30)

We discretize the 1D vertical domain 0 ≤ z ≤ z0 by uniform non-staggered grids

with grid spacing ∆z as shown in figure (6.1). Discretization of the equation (6.30) using

Crank-Nicholson scheme results in

un+1
k − un

k

∆t
= −1

ρ
(
∂pbd

∂x
)n+1/2

+
1

2∆z
[(ν + νt)

n+1
k+1/2(

un+1
k+1 − un+1

k

∆z
) − (ν + νt)

n+1
k−1/2(

un+1
k − un+1

k−1

∆z
)]
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+
1

2∆z
[(ν + νt)

n
k+1/2(

un
k+1 − un

k

∆z
) − (ν + νt)

n
k−1/2(

un
k − un

k−1

∆z
)] (6.31)

with n the current time step, n+ 1 the next time step, k = 2, ..., kmax − 1. The scheme is

second order in time and space. It is an implicit scheme, and large time step can be used.

Re-arrangement of the upper equation leads to a linear equation system

Aku
n+1
k−1 +Bku

n+1
k + Cku

n+1
k+1 = Dk, k = 2, ..., kmax − 1 (6.32)

where

Ak = − ∆t

2∆z2
(ν + νt)

n+1
k−1/2 (6.33)

Bk = 1 +
∆t

∆z2
(ν + νt)

n+1
k (6.34)

Ck = − ∆t

2∆z2
(ν + νt)

n+1
k+1/2 (6.35)

Dk = un
k − ∆t

1

ρ
(
∂pbd

∂x
)
n+1/2
k

+
∆t

2∆z2
[(ν + νt)

n
k+1/2(u

n
k+1 − un

k) − (ν + νt)
n
k−1/2(u

n
k − un

k−1)] (6.36)

The numerical boundary conditions at bottom and top of the boundary layer re-

quires different approaches for different problems. For the top boundary condition, if the

top free stream velocity ub(x, t) is known, then one should use

ukmax
= ub(x, t) (6.37)

and the unknown variables are u2, u3, ..., ukmax−1. If the free stream pressure gradient ∂pbd

∂x

is known, then one can use zero shear condition

τkmax−1/2 = 0, (6.38)

i.e.,

ukmax−1 = ukmax
(6.39)
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and the knowns are u2, u3, ..., ukmax
with the upper equation ( 6.39) added to the equation

system (6.32). Boundary condition (6.37) and (6.39) are equivalent to each other when z0

is sufficiently large. The bottom boundary condition is simply

u1 = 0. (6.40)

The turbulent viscosity νt is a function of the flow itself according to (6.23), hence itera-

tion is utilized to obtain solution. In practice, to save computation time, one may also use

the turbulent viscosity obtained from the last time step and the iteration is not necessary.

A tridiagonal matrix solver is used to solve equation (6.32). The pressure gradient ∂pbd

∂x

is the driving force for the boundary layer flow, and it is specified from the Boussinesq

model results. Bottom shear stress is obtained through the logarithmic profile assumption

within the first grid (6.24) and (6.25).

6.2.2.2 Nonlinear wave boundary layer

For nonlinear wave boundary layer, second order effects due to advection need to

be considered and the full equations (6.20)-(6.21) are solved. The same Crank-Nicholson

scheme is used for discretization, and the convective terms in (6.21) are moved to RHS of

the equation, which gives

Aku
n+1
k−1 +Bku

n+1
k + Cku

n+1
k+1 = Dk, k = 2, ..., kmax − 1 (6.41)

with

Ak = −[
∆t

2∆z2
(ν + νt)

n+1
k−1/2 +

∆t

4∆z
wn+1

k ]
1

(1 − u
c
)
n+1/2
k

(6.42)

Bk = 1 + [
∆t

∆z2
(ν + νt)

n+1
k ]

1

(1 − u
c
)
n+1/2
k

(6.43)

Ck = −[
∆t

2∆z2
(ν + νt)

n+1
k+1/2 −

∆t

4∆z
wn+1

k ]
1

(1 − u
c
)
n+1/2
k

(6.44)

Dk = {un
k − ∆t

1

ρ
(
∂pbd

∂x
)
n+1/2
k
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+
∆t

2∆z2
[(ν + νt)

n
k+1/2(u

n
k+1 − un

k) − (ν + νt)
n
k−1/2(u

n
k − un

k−1)]

− ∆t

4∆z
wn

k (un
k+1 − un

k−1)}
1

(1 − u
c
)
n+1/2
k

(6.45)

Vertical velocity w is integrated simply using trapezoidal rule from (6.20):

wn+1
k − wn+1

0 =
1

c

k−1
∑

m=1

(
un+1 − un

∆t
)k+1/2∆z (6.46)

where wn+1
0 = 0 from bottom boundary condition (6.28). Again, iteration and tridiagonal

solver are used to solve equation (6.41) for un+1 and (6.46) for wn+1. The wave speed c

is estimated as
√
gh within surfzone for simplicity. Note that the transform ∂

∂x
→ −1

c
∂
∂x

is only valid for progressive waves in +x direction. This method is not valid for standing

waves and reflected waves near structures.

6.2.3 3D boundary layer solution

For 3D boundary layer, with free stream flow in both x and y directions, we only

use the linear wave boundary layer solution.

In addition to (6.30), we have the linearized momentum equation in the y direction

for solution of v
∂v

∂t
= −1

ρ

∂pbd

∂y
+

1

ρ

∂

∂z
(ρ(ν + νt)

∂v

∂z
). (6.47)

The discretized equation is

Akv
n+1
k−1 +Bkv

n+1
k + Ckv

n+1
k+1 = Ek, k = 2, ..., kmax − 1, (6.48)

where Ak, Bk, Ck are the same as (6.33), (6.34) and (6.35).

Ek = vn
k − ∆t

1

ρ
(
∂pbd

∂y
)
n+1/2
k

+
∆t

2∆z2
[(ν + νt)

n
k+1/2(v

n
k+1 − vn

k ) − (ν + νt)
n
k−1/2(v

n
k − vn

k−1)] (6.49)

and νt is given by

νt = κ|u∗|min(z, 0.3z0), (6.50)
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where for rough wall

|u∗| = κ
|u(∆z, t)|

ln(30∆z/Ks)
(6.51)

and for smooth wall

|u(∆z, t)|
|u∗|

=
1

κ
ln(

|u∗|∆z
ν

) + 5.1 (6.52)

with |u(∆z, t)| =
√

u2(∆z, t) + v2(∆z, t)|.

6.3 Bottom Boundary Layer Model Test

In this section, we examine the solutions of the boundary layer model using a)

analytical linear laminar wave boundary layer and b) data and model results provided by

Jensen et al. (1989), Mellor (2002) and Foti and Scandura (2004).

6.3.1 Linear laminar wave boundary layer

Here, the laminar wave boundary layer solution (6.6) is used to test the numerical

scheme given by (6.32). We choose an ideal case with free stream velocity given by the

linear wave theory

U =
H

2
ck

1

sinh(kh)
cos(ωt− kx) ≡ U1 cos(ωt− kx) (6.53)

W = 0 (6.54)

η =
H

2
cos(ωt− kx), (6.55)

where we choose water depth h = 4m, wave height H = 0.5m, wave period T =

2π/ω = 5sec. The corresponding wave number is k = 0.225m−1, angular frequency ω =

1.257s−1 and wave phase speed is c = 5.589m/s. The bottom fluid excursion velocity

is U1 = 0.306m/s and the excursion radius is a = U1/ω = 0.244m. The viscosity is

ν = 1 × 10−6m2/s. We assume the bottom boundary layer flow is laminar although

the Reynolds number is Re = U1a/ν = 7.46 × 104 is not small. The thickness of the

boundary layer is on the order of δ0 = 1/β = 0.0013m with β =
√

ω
2ν

= 792.666m−1. In

the simulation, we use a domain of size 0 < z < z0 with z0 = 10δ0 = 0.013m. 151 grids
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in the vertical direction are used to obtain a vertical discretization step ∆z = 0.0867mm.

Time step ∆t = T/500 = 0.01s is used in the model computation. Linear equations

are solved and the bottom boundary condition u = 0 is used instead of using logarithmic

profile. Analytical solution is used as initial condition in the model simulation.

The model results are plotted against the analytical solution

u(x, z, t) = U1 cos(ωt− kx) − U1e
(−βz) cos(ωt− kx− βz) (6.56)

in figure 6.2, where x is set to be x = 0 without loss of generality. From the figure, the

model results are in very good agreement with the analytical results. Figure 6.3 shows the

comparison of model bottom shear stress and the analytical bottom shear stress

τb(x, t) =
√

2ρνβU1 cos(ωt− kx+ π/4) = 0.343 cos(ωt− kx+ π/4) (pa). (6.57)

The model captures the bottom shear stress time history well except small errors occur

at the times when the shear stress has a maximum absolute value. This is due to the fact

that the bottom shear stress here for laminar boundary layer is calculated by the first order

finite difference

τb = ρν
u(z = ∆z, t)

∆z
+O(∆z), (6.58)

although the Crank-Nicholson scheme for solving u(z, t) is of second order accuracy.

6.3.2 Wave boundary layer experiment by Jensen et al. (1989)

The boundary layer model performs well in comparison to analytical results of

linear theory. Here, we further test the model performance using experimental data under

smooth wall turbulence and rough wall turbulence conditions. The chosen data sets are

obtained from Jensen et al. (1989). Many researchers have also compared their models or

analysis to these data, e.g., Mellor (2002) and Foti and Scandura (2004). In this research,

we follow Foti and Scandura (2004) and show the model data comparisons of a smooth

wall case (test 10 of Jensen et al., 1989, hereafter called JSF10) and rough wall case

(test 13 of Jensen et al., 1989, hereafter called JSF13). The experiments were carried
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out in a U-shaped oscillatory-flow water tunnel with a working section 10m long, 0.39m

wide and 0.28m high for the smooth wall tests and 0.30m high for the rough wall tests.

Period of free stream oscillatory flow is T = 9.72s. Reynolds number is defined as

Re = U0ma
ν

where U0m is the amplitude of the free stream velocity. a is the orbital

excursion amplitude. The 2DHV linear boundary model is used to simulate the two test

cases because w = 0 and the flows in the oscillatory tunnel are uniform in the stream-

wise direction. The free stream velocity is given as ub(t) = U0m sin(θ) tanh(t/T ) with

θ = ωt = 2πt/T . The initial condition is given as zero, and the tanh(t/T ) function gives

a gradual spin-up of the system from t = 0 to t ≈= 5T when the system reaches a steadily

cycling state. Ten cycles are simulated and the results of the last cycle are presented in

the following paragraphs.

For the smooth wall turbulence case JSF10, the parameters are Uom = 2.0m/s,

T = 9.72s, a = 3.1m, Re = 6 × 106, ν = 1.14 × 10−2cm2/s and the sampling interval

is 24ms. The flow is simulated using our boundary layer model with ∆z = 0.0015m,

∆t = T/360. The model results of flow structure is plotted against the data and Mellor

(2002) in the figure 6.4. The bottom shear stress is indicated by the friction velocity u∗

and plotted in the figure 6.5. Generally speaking, the model captures the flow structure

within the boundary layer. The k− ǫ model of Mellor (2002) gives better agreement than

current model. This is reasonable because the k − ǫ model can give better description of

the turbulence kinetic energy and the turbulent viscosity. The current model, the Foti and

Scandura (2004) k − ǫ model and the Mellor (2002) k − ǫ model all agree very well with

the measured bottom shear stress. The results are similar due to the fact that the same

smooth wall log law is used in obtaining bottom shear stress.

For the rough wall turbulence case JSF13, the test parameters are Uom = 2.0m/s,

T = 9.72s, a = 3.1m, Re = 6 × 106, ν = 1.14 × 10−2cm2/s, roughness Ks = 0.84mm

and the sampling interval is 48ms. Similar to the JSF10 case, the model uses ∆z =

0.0015m as vertical step and ∆t = T/360 as time step. The modeled flow structure
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Figure 6.4: Flow structure for smooth wall boundary layer computation; model: solid;

data: circles; Mellor (2002): dash
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Figure 6.5: Bottom shear stress for smooth wall boundary layer computation; model:

solid; data: circles; Foti and Scandura (2004): dash; Mellor (2002): dot-
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Figure 6.6: Flow structure for smooth wall boundary layer computation; model: solid;

data: circles

is plotted against the data in the figure 6.6. The bottom shear stress is indicated by the

friction velocity u∗ and plotted in the figure 6.7. The flow structure is captured by the

current model. The largest discrepancy occurs at θ = π/2. Both the current model and

the Foti and Scandura (2004) models give good agreement of shear stress. The model by

Mellor (2002) underestimates bottom shear for this case.

163



0 50 100 150 200 250 300 350
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Linear laminar boundary layer bottom shear stress; model (−); data (o); Foti and Scandura 2004 (−−); Mellor 2002 (−.−)

θ (degree)

n
o

rm
a

li
z
e

d
 f

ri
c
ti
o

n
 v

e
lo

c
it
y
 u

*/U
m

0
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Chapter 7

MODEL TESTS I: WAVE CURRENT SIMULATION TEST

In this chapter, we test the Boussinesq wave current model using both experi-

mental results and analytical solutions. Both 1D model tests and 2D model tests are

conducted. We cover monochromatic waves, random waves, solitary wave run up, wave

breaking and undertow, wave refraction, wave diffraction and curvilinear grid system. In

these tests, no sediment transport and morphology change modules are included.

In the first section, the Mase and Kirby (1992) experiments are modeled to test

wave transformation and breaking on a sloping beach. Next, the Stive and Wind (1986)

experiment on wave-induced undertow is simulated. Then the solitary wave run up exper-

iments by Synolakis (1987) are compared with numerical computations to investigate the

accuracy of the wet-dry scheme. In order to test the use of curvilinear coordinates, we cal-

culate the transformation of waves in a circular channel. Finally, waves on a plane beach

with groins are modeled to show the model ability of dealing with coastal structures.

7.1 Mase and Kirby (1992) Flume Test

Mase and Kirby (1992) conducted a laboratory experiment of random wave prop-

agation over a plane beach. Figure 7.1 shows the experiment layout, where a constant

depth on the left connects to a constant slope on the right. Two sets of random waves

with peak frequencies 0.6Hz (run1) and 1.0Hz (run2) are generated by a wave maker

on the left end and propagate over the flat bottom and then onto the slope. Starting at

the toe, 12 wave gages are deployed along the slope at locations whose water depths are
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Figure 7.1: Experiment layout of Mase and Kirby (1992)

h = 47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5, 2.5 cm. Time series of surface elevation η

at these locations are collected simultaneously for about 14 minutes for run1 with sam-

pling frequency of 25Hz and 12 minutes for run2 with sampling frequency of 20Hz

.

Here we present the model results for run2 and compare them with the experi-

mental data. The closest gage to the experimental wave maker is at the toe with a depth

h = 47cm. The measured surface elevation data η(t) at that location is used as input to the

model to generate time series of source function amplitude in the numerical wave maker.

In the model run, the following parameters are used; ∆t = 0.01sec, ∆x = 0.025m, max-

imum tolerance error Errormax = 0.00005. Time series comparison of η between model

(solid lines) and data (dash lines) at 11 wave gage locations are shown in figure 7.2 and

figure 7.3.

Figure 7.4 shows the model and data comparison of the power spectra for the 11

gages. Generally, the model reproduces a satisfactory transformation of the wave spectra

over the slope. However, at gage h = 35cm, which is located close to the numerical wave

maker, the wave energy spectra is underestimated compared to the data at frequency f

about 2Hz. This is due to the numerical wave maker transfer function D1 (see appendix),
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Figure 7.2: Time series comparison of gages a) h = 35cm to 15cm; dash : data; solid:

model
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Figure 7.3: Time series comparison of gages b) h = 12.5 to 2.5cm; dash : data; solid:

model

which is exponentially increasing for high frequency waves. The numerical wave maker

has a cut off at the high frequency end. The effect of this cut off is that the wave energy

input in the numerical model is less than experiments and the model RMS wave height

is further underestimated by about 5 percent, which is shown in figure 7.5. In figure 7.6,

the wave set down and set up are also plotted against data values. The model seems to

overestimate the set down compared to data values, but the location of maximum set down

and the slope of the set up are well reproduced.

Comparison of normalized skewness (< η3(t) > /(
√

< η2(t) >)3) and asymme-

try (< H(η(t))3 > /(
√

< η2(t) >)3 where H() is Hilbert transform) at different water

depths is shown in figure 7.7. The model captures the transform of both skewness and

asymmetry well except that they are overestimated at the deep water end. In the shallow

water region, both the skewness and asymmetry are well reproduced. In the surfzone

(h < 10cm), a decay of skewness is both evident from the model run and the experiment.
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Figure 7.4: Model data comparison of wave spectra; model: thick solid line; data: thin

solid line
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Figure 7.8: Stive and Wind 1986 undertow test

7.2 Stive and Wind (1986) Undertow Test

A test of the undertow simulation against the experiments of Stive and Wind

(1996) is carried out here. The physical geometry of the experiments is shown in fig-

ure 7.8. The experiments are conducted on a sloping beach with slope of 1 : 40, with

incident wave height H0 = 0.145m , period T = 1.79sec , deep end depth h = 0.7m,

shore line located at x = 44m and breaking point at xb = 34.5m measured from the

location of the wave maker. Six experimental gages are located at (x = 36.51m, 37.49m,

38.47m, 39.45m, 40.43m, 41.41m) with measured mean bottom return current velocity

(ūb = −0.084, −0.067, −0.056, −0.053, −0.044, −0.045m/s) (values are obtained from

Stive and Wind (1986) ).

In the simulation, the following parameters are used: ∆t = 0.01sec, ∆x = 0.05m,

number of time steps nt = 15000, surface roller initial breaking angle φB = 16◦, roller

final φ0 = 10◦, surface roller transition time from T ∗ = 0.8sec, roller shape factor

froller = 1.0 ( please refer to the appendix for more details of surface roller description)

and film layer thickness δR = 0.001m for simulation of moving shore line.
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Figure 7.9 shows the simulated wave height, the measured wave height, a snap

shot of wave surface elevation with roller geometry, the model wave set up, the model

mean bottom velocity and the measured mean bottom velocity (undertow). The model

captures the correct wave breaking location and the undertow rate well. Wave set up is

also evident from the figure.

Figure 7.10 a) shows a snap shot of the bottom velocity. The predicted instanta-

neous bottom velocity is smooth throughout the domain. Whereas if we use the method in

Long and Kirby (2003), in which the bottom velocity is obtained by subtracting roller flux

contribution Mr/(h + η) from the bottom velocity predicted from the Wei et al. (1995)

Boussinesq equation, the resulting reconstruction of instantaneous bottom velocity has

non-physical negative spikes corresponding to the roller. These spikes will affect the pre-

diction of both bottom velocity skewness and asymmetry, which are very important for

bed load sediment transport prediction. Here, in the new model FUNWAVE1D2.0 we
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Figure 7.10: Snap shot of bottom velocity and surface elevation; solid : FUN-

WAVE1D2.0 model; dash: Long and Kirby (2003)

include Mr in the momentum equation directly, and it contributes to the return flow in

Mw. The effect of the second order dispersion terms in the relationship between Mw

and ũ (equivalent to uα in Wei et al. (1995) equation) eliminates the spikes in ũ and the

bottom velocity ub. From figure 7.10 b), the new model overpredicts the wave height in

the surfzone compared to Long and Kirby (2003). This is due to the inclusion of roller

flux in the momentum equation and the undertow current actually modifies the dispersion

relationship in the surfzone and shortens the wave length of waves. On the other hand,

the effect of currents on waves is not included in Long and Kirby (2003). From figure

7.9, the model wave height is also higher than the measured data. The reason for this

overprediction is probably due to the Doppler effects of undertow on waves.

7.3 Solitary Wave Run up Test

In this section, we test the wet-dry scheme using the Synolakis (1987) experi-

mental data. Two tests corresponding Figure 6 and Figure 9 in Synolakis (1987) are

conducted. The first one is a non-breaking solitary wave run up on a 1 : 19.85 sloping

beach with a constant depth (d = 0.39m) end. The second test is a breaking solitary wave

run up on the same bathymetry where back wash breaking occurs during the downrush
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phase and no breaking occurs during the uprush phase. For both of the non-breaking wave

case and the breaking case, the model runs use dt = 5.112498 × 10−4sec, ∆x = 0.01m

and film thickness δR = 0.001m.

Figure 7.11 shows the model and data comparison of the non-breaking wave run

up case corresponding to the figure 6 of Synolakis (1987). 10 snap shots of the surface

elevation at different times t/
√

g/d = 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 are shown in the

figure. The dashed lines show the results given by Synolakis (1987) based on nonlinear

shallow water wave theory. Figure 7.12 shows the model and data comparison of the

breaking wave run up case corresponding to figure 9 of Synolakis (1987), in which 8 snap

shots of the surface elevation at different times t/
√

g/d = 20, 26, 32, 38, 44, 50, 56, 62

are plotted. Again the dashed lines show the results given by Synolakis (1987) based on

nonlinear shallow water wave theory. The figures indicate that the analytical solution of

nonlinear water wave equation given by Synolakis (1987) overpredicts the wave run up

and run down, i.e., the maximum run up and maximum run down are overpredicted. On

the other hand the model results follow well with the experimental data except during

down rush breaking time of the breaking wave case (figure 7.12 (h)). The overprediction

of the run up and run down by analytical nonlinear wave theory could be due to the fact

that no bottom friction is considered in the analytical solution. This is also pointed out

by Lynett et al. (2002) in their simulation using an extrapolation method, in which it is

found that using a friction coefficient between fb = 10−3 and fb = 10−2 is adequate for

predicting the run up/run down magnitude for the experimental configuration considered.

In our model, the inclusion of bottom friction is automatically considered according to

the wet/dry scheme discussed in previous chapters. The largest discrepancy between the

present model results and the experimental data occurs in the down rush breaking phase.

This is due to the breaking wave treatment in the present model may not be accurate for

down rush wave breaking events.
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Figure 7.11: The climb of a solitary wave withH/d = 0.019 up a 1 : 19.85 beach; corre-

sponding to Synolakis (1987) figure 6; (a) t/
√

g/d = 25, (b) t/
√

g/d = 30,

(c) t/
√

g/d = 35, (d) t/
√

g/d = 40, (e) t/
√

g/d = 45, (f) t/
√

g/d = 50,

(g) t/
√

g/d = 55, (h) t/
√

g/d = 60, (i) t/
√

g/d = 65, (k) t/
√

g/d = 70;

dots: measured value ; solid line: model value; dash-line: nonlinear shal-

low water wave theory by Synolakis (1987)
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7.4 Waves in a Circular Channel

Following Shi et al. (2001) we test the model with wave propagation within a

circular channel of constant depth. Let r1 and r2 be the inner and outer radius of the

channel respectively, with r1 = 75m, r2 = 200m in this case. The depth of the channel is

4m. The coordinate transformation can be described by

ξ = ξ1 =
r2 −

√
x2 + y2

r2 − r1
(7.1)

η = ξ2 =
tan−1( y

x
)

π
(7.2)

Then the Cartesian coordinates are given by

x = ±
√

√

√

√

(r2 − (r2 − r1)ξ2)2

1 + tan2(πξ1)
(7.3)

y = x tan(πξ1) (7.4)

where when ξ1 ≤ 0.5, use ’+’, otherwise use ’-’.

Figure 7.13 shows the model grid system. In the simulation, grid dimensions

are set to be mx = 251 in the along channel direction (ξ) and ny = 51 in the radial

direction (η). Waves with period 4sec and height H0 = 0.4m are generated from right

inlet of the channel and propagate to the left along the channel. The modeling time

step is ∆t = 0.1sec. The model grid spacing and time step is twice as coarse than

the computation by Shi et al. (2001). Here, the incident wave height is finite amplitude

relative to water depth hence wave nonlinearity is not negligible and direct comparison to

linear theory is not justified. Sponge layers are placed both behind the wave maker (not

shown) and at the downstream end of the channel.

Figure 7.14 shows a snap shot of the surface elevation. The bending of the channel

causes wave diffraction along the inner circle of the channel. The wall at the outer circle

of the channel generates partial standing wave pattern and reflects wave energy further

down the channel. Finally, wave energy concentrates at the outer arc close to the outlet.
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Figure 7.13: Curvilinear grid system for the circular channel test

Figure 7.15 shows the wave height distribution normalized by the incident wave

height. The contours clearly show the distribution of wave energy. The area close to

the top of the inner circle is well sheltered. But the area located near the outer circle

and opposite to the incident waves has concentrated wave energy. The reflected wave

energy reaches the outlet which is again reflected by the outer circle and the maximum

normalized wave height there is about 0.8. This test demonstrates the model ability of

simulating waves in domains with curved boundaries.

7.5 Wave Field on a Sloping Beach with Periodic Groins

As a last yet important example, we show the simulation of oblique wave propa-

gation on a sloping beach with alongshore periodically placed groins (treated as vertical

walls). The geometry of the bathymetry comprises a constant depth (h = 4m) offshore

sea bed and a 1 : 20 sloping beach with longshore uniformity and groins which are placed

periodically with a distance of 50m from each other. Each groin extends 20m into the

ocean from the still water shoreline. Oblique waves of period T = 4sec and height

H0 = 0.5m are generated at 160m offshore. Two run cases with different approaching
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angles relative to the shorenormal direction are conducted. Case a) has an approaching

angle θ0 of 30◦ and case b) has an approaching angle of 45◦. Periodic longshore boundary

condition is imposed to mimic an infinitely long beach. In both cases, the model parame-

ters are set to be ∆x = ∆y = 1m, ∆t = 0.1sec. The simulation includes the shoaling,

refraction, diffraction and reflection as well as swash motion of the waves.

Figure 7.16 shows a snapshot of the wave field for case a) with contours of water

depth and groin layouts. Figure 7.17 shows a snapshot of the wave field for case b). 3D

surface plots are also shown in figure 7.18 and 7.19 for case a) and b) respectively. The

figures show clearly the wave refraction onto the beach and the diffraction and reflection

close to the groins. The moving shore lines are also shown in figure 7.18 and 7.19. The

waves reflected from the groins interact with the incident waves to form short-crest wave

patterns. There are also noticeable wave crests (also called Mach stems) perpendicular to

the groins which are due to nonlinear wave-wave interactions.

Figure 7.20 and 7.21 show the distribution of the wave height normalized by the

incident wave height (H/H0) of case a) for different horizontal (constant y coordinate)

and vertical (constant x coordinate) sections respectively. In the figure 7.20, the cross

section y = 78m is immediately next to the second groin in the figure 7.16, and the

rest of the sections are 10m next to each other consecutively except that the last section

y = 124m is immediately to the south of the third groin. The bottom slope starts from x =

100m and ends at x = 200m with the still water shoreline located at x = 180m. Waves

shoal on the slope up to x = 160m where the depth is 1m and the waves are reflected

and diffracted by the groins. The shadow areas of the groins are slightly sheltered. Wave

energy is dissipated by wave breaking further onshore (x > 165m). The cross section

y = 118m and y = 124m are at the south side of the third groin and the waves there are

reflected and the wave height is larger than the other sections. In the figure 7.21, wave

height distribution of vertical cross sections clearly shows the shoaling and reflection as

well as the wave dissipation as waves approach the groins and the shore line. At x =
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Figure 7.16: Wave field on a sloping beach with periodic groins, case a) θ0 = 30◦; The

shore parallel solid lines show the depth contours of −4m, −3m, −2m,

−1m, 0m respectively from the left to the right; Still water level shoreline

is located at x = 180m.
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Figure 7.17: Wave field on a sloping beach with periodic groins, case b) θ0 = 45◦; The

shore parallel solid lines show the depth contours of −4m, −3m, −2m,

−1m, 0m respectively from the left to the right; Still water level shoreline

is located at x = 180m.
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Figure 7.18: Surface elevation and bathymetry of case a) θ0 = 30◦
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Figure 7.19: Surface elevation and bathymetry of case b) θ0 = 45◦
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150m the wave height is dominated by shoaling effects due to the slope from x = 100m

to x = 150m although partial standing wave patterns are also pronounced. At x = 155m,

more clear partial standing wave pattern are evident such that the wave height distribution

has more shorter scale variations. At x = 160m, the groins locations are shown as wave

height being zero. Standing wave pattern is very well organized and there 9 anti-nodes

between two adjacent groins. The wave height immediately to the south of the groin

is much larger than the wave height immediately to the north of the groin due to the

reflection and sheltering of the south side and the north side respectively. From x = 165m

to x = 175m, the wave energy is significantly dissipated due to wave breaking. Similar

plots of case b) ares shown in figure 7.22 and 7.23. The wave height distribution is similar

to case a) yet with a few noticeable differences: i) the wave shoaling from x = 100m to

x = 150m of case b) is not as large as case a) mainly due to 45 degree incident waves

experience a milder slope in the wave ray direction; ii) the number of anti-nodes between

the groins is 11 for case b) and 10 for case a) due to shorter wave length in y direction for

case b) than for case a).

Figure 7.24 shows the depth and time averaged velocity field between two groins

for case a). There is a major cells at the south side of the groin from which waves are

reflected. This circulation can possibly lead to scour. A streak of flow is also meandering

offshore along the tip of the groin. In the shadowed zone, circulation is relatively weaker

and sediments may deposit.

This example shows that the FUNWAVE2D2.0 model is capable of simulating

waves with complex nearshore geometries.
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Figure 7.20: Normalized wave height distribution H/H0 of 6 horizontal sections of case

a) θ0 = 30◦
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Figure 7.22: Normalized wave height distribution H/H0 of 6 horizontal sections of case

b) θ0 = 45◦
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Chapter 8

MODEL TESTS II: SEDIMENT TRANSPORT TEST

In this chapter, we focus on testing the overall coupled hydrodynamic and sedi-

ment transport models using field data and laboratory data. First, the sand bar migration

events occurring in Duck’94 field experiment are investigated in detail. Both onshore bar

migration and offshore migration events are modeled using FUNSEDI1D model com-

prised of FUNWAVE1D2.0, bottom boundary layer model, sediment transport model us-

ing modified Bagnold formula and Meyer-Peter Müller formula and morphological model

using the Euler-WENO scheme. Second, the LIP11D laboratory experiments are also

modeled to assess the model applicability.

Two sets of sediment transport formulations are tested. Model A uses the coupled

Boussinesq model and an un-averaged Bagnold sediment transport model based on the

Boussinesq model predicted bottom velocity with the ad-hoc free stream acceleration

term proposed by Long and Kirby (2003). Model B uses the coupled Boussinesq model

and Meyer-Peter-Müller (1948) sediment transport model with bottom shear stress given

by the boundary layer model for the wave-related transport rate and a Bailard (1981)

formula for free stream mean flow related transport rate as shown in Hsu et al. (2005).

In model A, the volumetric transport rate is calculated by

qtot =
itot

g(ρs − ρ)
(8.1)

where

itot = ib + is + ia = ρCf
ǫB

tanφ
[|ub|2ub −

tan β

tanφ
|ub|3]
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+ ρCf
ǫS
wfall

[|ub|3ub −
ǫS tan β

wfall

|ub|5]

+ g(ρs − ρ)Ka(|ub,t| − ubtcr)sign(ub,t) (8.2)

where ib, is are immersed weight sediment transport rate for bed load and suspended

load respectively, ia is the accleration contribution, φ is the internal angle of friction,

tan β is the slope of the bed level, Cf is friction coefficient, wfall is the sediment fall

velocity, ub is the bottom velocity. ǫB and ǫS are effectiveness coefficients for bed load

and suspended load. ub,t is the acceleration of instantaneous free stream velocity ub, and

ubtcr is a threshold value. itot is the total immersed weight sediment transport rate. Ka is

an empirical dimensional coefficient. The last term is set to zero when |ub,t| − ubtcr ≤ 0

In model B, the volumetric transport rate is calculated by

qtot = qw + qc (8.3)

where qw corresponding to wave-related transport rate is driven by bottom wave boundary

layer shear stress, qc is associated with mean velocity outside of the bottom boundary layer

(Hsu et al., 2005). qw is calculated according to Meyer-Peter-Müller formula

Ψ = A(θ − θc)
b (8.4)

where Ψ is the normalized transport rate, θ is the Shields parameter, θc is the threshold

value of the Shields parameter for initiation of sediment transport, A and b are dimension-

less constants, with typical values A = 11 and b = 1.65 that are used below.

Ψ = qw/(d
√

(s− 1)gd) (8.5)

θ = τb/((ρs − ρ)gd) (8.6)

where τb is the instantaneous bed shear stress obtained from solving the wave bottom

boundary layer instead of using quadratic correlations. qc is calculated according to the

Bailard (1981) formula (Hsu et al., 2005).

qc =
ρ

g(ρs − ρ)
Cf

ǫB
tanφ

[|ub|2ub −
tan β

tanφ
|ub|3]

192



+
ρ

g(ρs − ρ)
Cf

ǫS
wfall

[|ub|3ub −
ǫS tan β

wfall

|ub|5] (8.7)

where ub is the mean bottom velocity based on a time average of instantaneous bottom

velocity for an appropriate period of time.

8.1 Duck’94 Field Experiment Test

As an example of sand bar migration in a real coastal setting, the Duck ’94 exper-

iment is well documented and presents very informative data for testing the model in this

research. A number of studies have been made on the significant bar migration processes

during the 3 month experiment. Typically, onshore bar migrations were observed under

intermediate wave conditions, while large offshore bar migrations were observed under

strong storm wave conditions. Previous research by Gallagher et al. (1998) indicated that

the offshore bar migration can be qualitatively modeled with a BBB type model. Onshore

migration is associated strongly with flow acceleration (Elgar et al., 2001) and free stream

pressure gradient, and the BBB models did not capture it.

8.1.1 Layout of the experiments and wave conditions

Figure 8.1 shows a basic lay out of the experiment. The contours show the bathym-

etry which clearly indicates the existence of a linear longshore sand bar. The open squares

below profile line number 245 are the cross-shore deployed pressure gages and current

meters. The open circles adjacent to the pressure gages are sonar altimeters to measure

bottom elevation. Figure 8.2 shows the bar crest migration history for the most prominent

nearshore bar (from Elgar et al., 2001). The top panel shows the time history of signifi-

cant wave height offshore from an measurement array located at 8 meter depth isobath. It

indicates that there were 4 major storms that took place at about 33, 52, 62 and 71 days

respectively after August 1, 1994. In the bottom panel, the cross shore location of the bar

crest is shown by the dark thick line, with the color indicating the acceleration skewness

estimated from near bottom velocities. It has been pointed out by Elgar et al. (2001) that
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Figure 8.1: Duck 94 experiment layout (open squares: pressure gages; circles: sonar altimeters;

from Stauble and Cialone, 1997 )

Figure 8.2: Bar migration history (bar crest location indicated by thick solid curve, modified

from Elgar et al., 2001)
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Gage x(m) y(m) Gage x(m) y(m)

s02 135.07 930.06 s06 169.88 930.09

s03 145.42 930.84 s05 170.08 930.09

s04 160.76 930.64 s12 205.42 930.45

s08 168.64 930.06 s13 220.23 930.41

s11 169.47 930.87 s14 240.55 930.00

s07 169.48 930.08 s15 264.70 930.44

s09 169.49 929.47 s17 320.23 930.67

s10 169.49 929.67 s18 398.43 931.12

Table 8.1: Sonar altimeter gage locations during September 21 to September 30 and

October 10 to October 16 in the Duck’94 field experiments

Gage x(m) y(m) Gage x(m) y(m)

p1 124.94 929.82 p14 240.55 928.72

p2 135.01 928.88 p15 264.70 929.06

p3 145.42 929.56 p16 295.8 929.94

p4 160.77 929.36 p17 320.37 929.39

p5 169.50 928.44 p45 370.08 928.03

p23 190.20 929.92 p18 398.39 929.85

p26 190.20 929.92 p19 480.34 930.57

p12 205.34 929.17 p87 884.11 919.79

p13 220.23 929.13

Table 8.2: Pressure gage locations during September 21 to September 30 in the Duck’94

field experiments

the offshore migration events were associated with strong undertow induced by break-

ing waves in energetic storm conditions. There was a major onshore bar migration event

around September 20 to September 30 when waves were moderately energetic but the

acceleration skewness was relatively high.

The 16 sonar altimeter gage locations (local Field Research Facility (FRF) co-

ordinates) are shown in table 8.1. The pressure gage locations are shown in table 8.2

and 8.3 where gage p16 was located at (295.80, 929.94) in September and moved to

(252.03, 917.26) during from 22:00, October 1 to 22:00, October 27. The current me-

ters are mostly co-located with the pressure with some exceptions are shown in table 8.4.
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Gage x(m) y(m) Gage x(m) y(m)

p1 124.94 929.82 p14 240.55 928.72

p2 135.01 928.88 p16 252.03 917.26

p3 145.42 929.56 p15 264.70 929.06

p4 160.77 929.36 p17 320.37 929.39

p5 169.50 928.44 p45 370.08 928.03

p23 190.20 929.92 p18 398.39 929.85

p26 190.20 929.92 p19 480.34 930.57

p12 205.34 929.17 p87 884.11 919.79

p13 220.23 929.13

Table 8.3: Pressure gage locations during October 10 to October 16 in the Duck’94 field

experiments

Gage x(m) y(m) Gage x(m) y(m)

u02 135.04 929.69 u16 296.40 931.31

u03 145.42 930.17 u17 320.30 930.00

u04 160.76 929.98 u18 398.41 930.46

u05 169.49 929.08 u19 480.34 930.00

u12 205.38 929.79 u22 189.87 930.74

u13 220.23 929.75 u44 370.15 928.63

u14 240.55 929.33 u87 884.11 915.44

u15 264.70 929.77

Table 8.4: Near bed cross shore current meter (u-gage) locations during September 21

to October 16 in the Duck’94 field experiments; (alongshore current meters

(v-gage) are co-located with the cross shore current meters)
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Figure 8.3 and 8.4 show the peak wave period and significant wave height at gage

p19 versus time in September, 1994 and October, 1994 respectively. The data are plotted

every 170 minutes and connected using a solid line. On some of the days, the data were

missing due to gage malfunction.

The current meters recorded both the alongshore and cross shore currents. The

following figures 8.5 to 8.17 show the time history of daily averaged alongshore and

cross shore currents as well as the bed level at 1:00am of each respective day during from

September 21 to September 26 when a major onshore bar migration event took place and

from October 11 to October 16 when a major offshore bar migration event took place

(data courtesy of S. Elgar).

To show more clearly the near bottom currents landward of the bar trough, the

alongshore and cross shore mean currents (averaged every 17 minutes) of gage p12 (FRF

coordinate (205.38, 929.79), collocated with velocity gage u12) and p13 (FRF coordinate

(220.23, 929.75), collocated with velocity gage u13) are shown in the figure 8.18 and

8.19 for September and 8.20 and 8.21 for October. From figure 8.18 and 8.19, during

the period of September 21 to September 27, both the alongshore current and the cross

shore current near the bottom of the bar trough are in moderate magnitude except on day

September 22 when one of the major storms took place (see figure 8.2 and 8.3) and the

observed cross shore undertow current (offshore near bed current) exceeded 0.4m/s and

the alongshore current exceeded 0.8m/s toward north direction. The gage p13 is closer

to the bar crest, and the recorded undertow currents were less than 0.3m/s from day

23 to 27. The alongshore currents of gage p13 were on the order of 0.2m/s from day

23 to 27. On the other hand, from figure 8.20 and 8.21, when a large storm struck the

region and offshore bar migration was observed, both the undertow and the alongshore

currents are quite large. The cross shore undertow currents exceeded 0.3m/s for the

majority of the time from October 10 to October 17. The alongshore currents reached

1m/s at both gages p12 and p13 and they changed direction from toward south to toward
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Figure 8.3: Peak wave period (circles) and significant wave height (triangles) at gage

p19 in Sept., 1994
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Figure 8.5: Mean current and bed elevation on day 09/21/94
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Figure 8.6: Mean current and bed elevation on day 09/22/94
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Figure 8.7: Mean current and bed elevation on day 09/23/94
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Figure 8.8: Mean current and bed elevation on day 09/24/94
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Figure 8.9: Mean current and bed elevation on day 09/25/94
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Figure 8.10: Mean current and bed elevation on day 09/26/94
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Figure 8.11: Mean current and bed elevation on day 10/10/94
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Figure 8.12: Mean current and bed elevation on day 10/11/94
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Figure 8.13: Mean current and bed elevation on day 10/12/94
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Figure 8.14: Mean current and bed elevation on day 10/13/94
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Figure 8.15: Mean current and bed elevation on day 10/14/94
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Figure 8.16: Mean current and bed elevation on day 10/15/94
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Figure 8.17: Mean current and bed elevation on day 10/16/94

north at the beginning of day 13. These observations help to qualitatively explain the

onshore bar migration event when undertow was weak and offshore bar migration event

when undertow was strong. The fact that weak alongshore currents were observed during

September 23 to September 27 enables us to use a 1-D cross shore model to simulate

the hydrodynamics and bathymetry change in great detail. Although there have been

relatively strong longshore processes during the October 10 to October 16 events, we still

elect to use the 1D modeling due to limited data available.
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Figure 8.18: Mean current of bar trough gage p12 in September, 1994; Upper panel:

cross shore mean current (positive onshore); Lower panel: alongshore mean

current (positive toward south)
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Figure 8.19: Mean current of bar trough gage p13 in September, 1994; Upper panel:

cross shore mean current (positive onshore); Lower panel: alongshore mean

current (positive toward south)
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Figure 8.20: Mean current of bar trough gage p12 in October, 1994; Upper panel: cross

shore mean current (positive onshore); Lower panel: alongshore mean cur-

rent (positive toward south)
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Figure 8.21: Mean current of bar trough gage p13 in October, 1994; Upper panel: cross

shore mean current (positive onshore); Lower panel: alongshore mean cur-

rent (positive toward south)
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gage x(m) y(m) gage x(m) y(m)

a00 0.0 930.00 s13 220.23 930.41

p01 124.94 929.82 s14 240.55 930.00

s02 135.07 930.06 s15 264.70 930.44

s03 145.42 930.84 s17 320.23 930.67

s04 160.76 930.64 s18 398.43 931.12

s05 170.08 930.09 p19 480.34 930.57

s12 205.42 930.45

Table 8.5: Gage locations where bathymetry data are obtained

8.1.2 Model Setup

In the model runs, we use the following procedure: 1) obtain the measured pres-

sure time series (0.5 sec interval) of the offshore gage p19; 2) convert the pressure time

series into free surface elevation time series (using linear wave theory) which contain both

wave signal and tidal level; 3) de-trend the free surface elevation time series into a wave

time series and a tidal series; 4) use the wave time series and the tidal series as input for

the FUNSEDI1D1.0 model to calculate the wave propagation and bathymetry change on

a day to day basis.

The 13 gage locations (FRF coordinate) for obtaining the bathymetry are listed

in table 8.5, where the gage number a00 is artificial to extend the bathymetry onshore to

x = 0 with a beach slope corresponding to the two close-to-shoreline gages p01 and s02,

gage number p01 and p19 are pressure gages which also reported the bed elevation, and

gages s02, s03, s04, s05, s12, s13, s14, s15, s17, s18 are sonar altimeter gages.

The obtained time series for waves and tidal level are plotted in figure 8.22 and

8.23 for September and 8.24 and 8.25 for October respectively.

The observd bathymetry of each day are shown in figure 8.26 and 8.27.

Both the onshore bar migration (09/23/94 to 09/30/94) and offshore migration

(10/10/94 to 10/16/94) events are modeled separately using the FUNSEDI1D1.0 model.

The initial bathymetry data are obtained from the measured altimeters at 1:00am on Sep-

tember 23 for the onshore bar migration run and at 1:00am on October 10 for the offshore
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Figure 8.22: Time series of wave signal η at gage p19 from 09/23/94 to 09/29/94; The

time axis is from 1:00am of each day to 1:00am of the next day

5 10 15 20 25
−2

0

2

tid
e(

m
)

09/23/94

5 10 15 20 25
−2

0

2

tid
e(

m
)

09/24/94

5 10 15 20 25
−2

0

2

tid
e(

m
)

09/25/94

5 10 15 20 25
−2

0

2

tid
e(

m
)

09/26/94

5 10 15 20 25
−2

0

2

tid
e(

m
)

09/27/94

5 10 15 20 25
−2

0

2

tid
e(

m
)

09/28/94

5 10 15 20 25
−2

0

2

tid
e(

m
)

time of the day (hr)

09/29/94

Figure 8.23: Time series of tidal level signal at gage p19 from 09/23/94 to 09/29/94

(relative to NGVD datum); The time axis is from 1:00am of each day to

1:00am of the next day
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Figure 8.25: Time series of tidal level signal at gage p19 from 10/10/94 to 10/16/94 (rela-

tive to NGVD datum); The time axis is from 1:00am of each day to 1:00am

of the next day; The measurements from 13:00 to 16:00 on day 10/15/94

are missing due to gage malfunction, and they are shown as repeated signal
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Figure 8.26: Measured cross shore bathymetry from Sept. 21 to Sept. 30 (relative to

NGVD datum)
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bar migration run. The bathymetry data were originally composed of only 12 points ac-

cording to the altimeters and they are interpolated to be a 1-D array of bathymetry with

spacing ∆x = 1m.

Time step for both the wave model (FUNWAVE) is ∆t = 0.1s and the morpho-

logical model (Euler-WENO) is set to be ∆ts = 30min. The sediment transport rates are

calculated instantaneously and accumulated for every 30min before being used to update

the bathymetry.

8.1.3 Wave and mean Current test

A detailed comparison of the modeled bottom velocities and measured velocities

is shown below. The compared quantities include power spectra, variance, mean flow and

skewness. Figure 8.28 to 8.35 show the comparison of the power spectra of the modeled

velocities with the measured velocities at 1:00am of day September 23 to September 30.

From the figures, the modeled spectra agrees well with the measured data spectra except

at the high frequency end. Figure 8.36 to 8.43 show the comparison of the variance of

the modeled velocities with the measured velocities for each 3 hour period of each day

from September 23 to September 30. Figure 8.44 to 8.51 show the comparison of the

mean values of the modeled cross shore velocities with the measured velocities for each

3 hour period of each day from September 23 to September 30. Figure 8.52 to 8.59 show

the comparison of the skewness of the modeled velocities with the measured velocities

for each 3 hour period of each day from September 23 to September 30. Generally, the

model gives good estimate on variance and reasonable estimate on skewness. The mean

current predicted by the model is very small while the data show substantial scattering.

Figure 8.60 to 8.66 show the comparison of the power spectra of the modeled

velocities with the measured velocities at 1:00am of day October 10 to October 16. Figure

8.67 to 8.73 show the comparison of the variance of the modeled velocities with the

measured velocities for each 3 hour period of each day from October 10 to October 16.

Figure 8.74 to 8.80 show the comparison of the mean values of the modeled cross shore
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Figure 8.28: Model data comparison of velocity power spectra at different gages on

09/23/94, 1:00am (data: thin-line; model: thick-line)

velocities with the measured velocities for each 3 hour period of each day from October 10

to October 16. Figure 8.81 to 8.87 show the comparison of the skewness of the modeled

velocities with the measured velocities for each 3 hour period of each day from October 10

to October 16. Again, wave spectra and variance are reproduced in reasonable accuracy.

Skewness agreement is also acceptable. The mean current (undertow) is underestimated

substantially. The reason of the underestimate may be due to the assumption of vertical

uniformity of the return flow in the model and the sand bar is located at the depth of 2 to 4

meters which is not quite shallow compared to lab experiments. This severe underestimate

of near-bottom undertow causes difficulty in modeling the offshore bar migration.
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Figure 8.29: Model data comparison of velocity power spectra at different gages on

09/24/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.30: Model data comparison of velocity power spectra at different gages on

09/25/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.31: Model data comparison of velocity power spectra at different gages on

09/26/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.32: Model data comparison of velocity power spectra at different gages on

09/27/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.33: Model data comparison of velocity power spectra at different gages on

09/28/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.34: Model data comparison of velocity power spectra at different gages on

09/29/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.35: Model data comparison of velocity power spectra at different gages on

09/30/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.36: Model data comparison of velocity variance at different velocity gages on

09/23/94, (data: circles; model: pluses)
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Figure 8.37: Model data comparison of velocity variance at different velocity gages on

09/24/94, (data: circles; model: pluses)
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Figure 8.38: Model data comparison of velocity variance at different velocity gages on

09/25/94, (data: circles; model: pluses)
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Figure 8.39: Model data comparison of velocity variance at different velocity gages on

09/26/94, (data: circles; model: pluses)
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Figure 8.40: Model data comparison of velocity variance at different velocity gages on

09/27/94, (data: circles; model: pluses)
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Figure 8.41: Model data comparison of velocity variance at different velocity gages on

09/28/94, (data: circles; model: pluses)
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Figure 8.42: Model data comparison of velocity variance at different velocity gages on

09/29/94, (data: circles; model: pluses)
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Figure 8.43: Model data comparison of velocity variance at different velocity gages on

09/30/94, (data: circles; model: pluses)
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Figure 8.44: Model data comparison of velocity mean at different velocity gages on

09/23/94, (data: circles; model: pluses)
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Figure 8.45: Model data comparison of velocity mean at different velocity gages on

09/24/94, (data: circles; model: pluses)
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Figure 8.46: Model data comparison of velocity mean at different velocity gages on

09/25/94, (data: circles; model: pluses)
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Figure 8.47: Model data comparison of velocity mean at different velocity gages on

09/26/94, (data: circles; model: pluses)
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Figure 8.48: Model data comparison of velocity mean at different velocity gages on

09/27/94, (data: circles; model: pluses)
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Figure 8.49: Model data comparison of velocity mean at different velocity gages on

09/28/94, (data: circles; model: pluses)
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Figure 8.50: Model data comparison of velocity mean at different velocity gages on

09/29/94, (data: circles; model: pluses)
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Figure 8.51: Model data comparison of velocity mean at different velocity gages on

09/30/94, (data: circles; model: pluses)
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Figure 8.52: Model data comparison of velocity skewness at different velocity gages on

09/23/94, (data: circles; model: pluses)
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Figure 8.53: Model data comparison of velocity skewness at different velocity gages on

09/24/94, (data: circles; model: pluses)
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Figure 8.54: Model data comparison of velocity skewness at different velocity gages on

09/25/94, (data: circles; model: pluses)
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Figure 8.55: Model data comparison of velocity skewness at different velocity gages on

09/26/94, (data: circles; model: pluses)
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Figure 8.56: Model data comparison of velocity skewness at different velocity gages on

09/27/94, (data: circles; model: pluses)
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Figure 8.57: Model data comparison of velocity skewness at different velocity gages on

09/28/94, (data: circles; model: pluses)
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Figure 8.58: Model data comparison of velocity skewness at different velocity gages on

09/29/94, (data: circles; model: pluses)
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Figure 8.59: Model data comparison of velocity skewness at different velocity gages on

09/30/94, (data: circles; model: pluses)
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Figure 8.60: Model data comparison of velocity power spectra at different gages on

10/10/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.61: Model data comparison of velocity power spectra at different gages on

10/11/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.62: Model data comparison of velocity power spectra at different gages on

10/12/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.63: Model data comparison of velocity power spectra at different gages on

10/13/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.64: Model data comparison of velocity power spectra at different gages on

10/14/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.65: Model data comparison of velocity power spectra at different gages on

10/15/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.66: Model data comparison of velocity power spectra at different gages on

10/16/94, 1:00am (data: thin-line; model: thick-line)
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Figure 8.67: Model data comparison of velocity variance at different velocity gages on

10/10/94, (data: circles; model: pluses)
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Figure 8.68: Model data comparison of velocity variance at different velocity gages on

10/11/94, (data: circles; model: pluses)
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Figure 8.69: Model data comparison of velocity variance at different velocity gages on

10/12/94, (data: circles; model: pluses)
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Figure 8.70: Model data comparison of velocity variance at different velocity gages on

10/13/94, (data: circles; model: pluses)
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Figure 8.71: Model data comparison of velocity variance at different velocity gages on

10/14/94, (data: circles; model: pluses)
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Figure 8.72: Model data comparison of velocity variance at different velocity gages on

10/15/94, (data: circles; model: pluses)
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Figure 8.73: Model data comparison of velocity variance at different velocity gages on

10/16/94, (data: circles; model: pluses)
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Figure 8.74: Model data comparison of velocity mean at different velocity gages on

10/10/94, (data: circles; model: pluses)
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Figure 8.75: Model data comparison of velocity mean at different velocity gages on

10/11/94, (data: circles; model: pluses)
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Figure 8.76: Model data comparison of velocity mean at different velocity gages on

10/12/94, (data: circles; model: pluses)
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Figure 8.77: Model data comparison of velocity mean at different velocity gages on

10/13/94, (data: circles; model: pluses)

239



100 200 300 400 500
−0.5

0

0.5

<u
b>(

m
/s

ec
) time: 1014/1:00

100 200 300 400 500
−0.5

0

0.5
time: 1014/4:00

100 200 300 400 500
−0.5

0

0.5

<u
b>(

m
/s

ec
) time: 1014/7:00

100 200 300 400 500
−0.5

0

0.5
time: 1014/10:00

100 200 300 400 500
−0.5

0

0.5

<u
b>(

m
/s

ec
) time: 1014/13:00

100 200 300 400 500
−0.5

0

0.5
time: 1014/16:00

100 200 300 400 500
−0.5

0

0.5

FRF x(m)

<u
b>(

m
/s

ec
) time: 1014/19:00

100 200 300 400 500
−0.5

0

0.5

FRF x(m)

time: 1014/22:00

Figure 8.78: Model data comparison of velocity mean at different velocity gages on

10/14/94, (data: circles; model: pluses)
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Figure 8.79: Model data comparison of velocity mean at different velocity gages on

10/15/94, (data: circles; model: pluses)
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Figure 8.80: Model data comparison of velocity mean at different velocity gages on

10/16/94, (data: circles; model: pluses)
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Figure 8.81: Model data comparison of velocity skewness at different velocity gages on

10/10/94, (data: circles; model: pluses)
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Figure 8.82: Model data comparison of velocity skewness at different velocity gages on

10/11/94, (data: circles; model: pluses)
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Figure 8.83: Model data comparison of velocity skewness at different velocity gages on

10/12/94, (data: circles; model: pluses)
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Figure 8.84: Model data comparison of velocity skewness at different velocity gages on

10/13/94, (data: circles; model: pluses)
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Figure 8.85: Model data comparison of velocity skewness at different velocity gages on

10/14/94, (data: circles; model: pluses)
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Figure 8.86: Model data comparison of velocity skewness at different velocity gages on

10/15/94, (data: circles; model: pluses)
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Figure 8.87: Model data comparison of velocity skewness at different velocity gages on

10/16/94, (data: circles; model: pluses)
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8.1.4 Onshore bar migration events

In this section, we report the results obtained by complete simulation for 8 days

from 09/23 to 09/30 when a large onshore migration event took place.

First, we reproduce the results obtained by Hsu et al. (2005) where measured near

bottom velocities of 12 u-gages are used to drive a Meyer-Peter-Müller type sediment

transport model. Then, the same calculations are conducted using the Boussinesq model

predicted near bottom velocities (based on measured bathymetry) at the same 12 u-gages

to show that the results are consistent with Hsu et al. (2005).

Then, we conduct continuous model runs using the coupled model FUNSEDI1D1.0

with the two different transport formulations: model A (8.2) and model B (8.3). Continu-

ous predictions of surface wave elevation, bottom velocity, shear stress, and transport rates

are made to predict the bathymetry change in the entire domain with a spatial resolution

of ∆x = 1m.

8.1.4.1 Data driven model by Hsu et al. (2005)

In Hsu et al. (2005), simulation of bedform change using measured near bottom

velocities from 12 gages is carried out with the above mentioned boundary layer model.

Here, we demonstrate that almost the same results are obtained using the near bottom

velocities from the Boussinesq model.

In the computation, the parameters are: dry sediment density ρs = 2650kg/m3,

sediment diameter d = 0.2mm, bottom roughness Ks = 14d, still bed porosity np = 0.3.

These parameters are essentially the same as in Hsu et al. (2005) and Long and Kirby

(2003). The onshore bar migration event from September 23, 1:00am to September 28,

1:00am is simulated separately using modeled bottom velocities and measured bottom

velocities. Note that the modeled bottom velocities here are calculated based on the mea-

sured bathymetry to be consistent with the measured velocities.

Figure 8.88 and figure 8.89 show the modeled bedform change using measured

bottom velocities following Hsu et al. (2005). In figure 8.88, the predicted bathymetries
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Figure 8.88: Onshore bar migration predicted using measured velocities during

09/23/1994 1:00am to 09/28/1994 1:00am; circles: measured bathymetry;

triangles: predicted bathymetry using total transport qc+qw by (8.3); pluses:

predicted bathymetry using current-related transport qc only; stars: pre-

dicted bathymetry using wave-related transport qw only
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Figure 8.89: Onshore bar migration predicted using measured velocities during

09/23/1994 1:00am to 09/28/1994 1:00am; circles: measured bathymetry

(dash line indicates the measured bathymetry on 09/23/1994 1:00am, solid

line indicates the measured bathymetry on 09/28/1994 1:00am); triangles:

predicted bathymetry using total transport qc + qw by (8.3); pluses: pre-

dicted bathymetry using current-related transport qc only; stars: predicted

bathymetry using wave-related transport qw only);
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due to wave-related transport qw, due to current-related transport qc and due to the total

transport qw + qc are plotted for each day. Figure 8.89 shows the predicted bathymetries

due to qw, qc and qw+qc for day 09/28/1994 1:00am compared to the measured bathymetry

change. Although the mean current (undertow) is quite small during this period, the con-

tribution of qc contributed to slight offshore transport rate and undermines the dominant

onshore transport rate due to qw. qw is driven by instantaneous shear stress resulted from

the wave bottom boundary layer model, and it automatically incorporates wave skewness

and asymmetry. The total transport rate qw + qc by (8.3) gives a reasonable prediction

of the onshore bar migration process during the five day period. This indicates that the

bottom shear stress driven transport qw gives significant onshore bar migration. The same

results are also shown in Hsu et al. (2005).

Figure 8.90 and figure 8.91 shows the modeled bedform change using the Boussi-

nesq model produced bottom velocities with the same transport rate calculations. We

see that again the contribution of qc to the bedform change is almost negligible because

the mean velocities are fairly small. When the total transport rate is considered, the pre-

dicted bar migration reproduces the measured bathymetry change. This indicates that the

Boussinesq model along with the bottom boundary layer model can provide reasonable

predictions of wave orbital velocities and bottom shear stress.

The simulations in figure 8.89 and Hsu et al. (2005) are based on measured near

bottom velocities. These velocities correctly reflect the bed deformation effects on waves.

In the modeling given by figure 8.91, similarly, the near bed velocities are modeled based

on measured bathymetry and used to drive sediment transport model, but no feed back is

given from the computed bathymetry to the hydrodynamic model. This is referred to as

one-way coupling model.
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Figure 8.90: Onshore bar migration predicted using Boussinesq model velocities dur-

ing 09/23/1994 1:00am to 09/28/1994 1:00am; circles: measured bathym-

etry; triangles: predicted bathymetry using total transport qc + qw by (8.3);

pluses: predicted bathymetry using current-related transport qc only; stars:

predicted bathymetry using wave-related transport qw only
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Figure 8.91: Onshore bar migration predicted using Boussinesq model velocities during

09/23/1994 1:00am to 09/28/1994 1:00am, circles: measured bathymetry

(dash line indicates the measured bathymetry on 09/23/1994 1:00am, solid

line indicates the measured bathymetry on 09/28/1994 1:00am); triangles:

predicted bathymetry using total transport qc + qw by (8.3); pluses: pre-

dicted bathymetry using current-related transport qc only; stars: predicted

bathymetry using wave-related transport qw only);
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8.1.4.2 Model results by FUNSEDI1D1.0

In this section, we investigate two-way coupled models, in which velocities are

computed based on the evolving, numerically predicted bathymetry. This approach in-

troduces an extra degree of freedom when we feed back the computed bathymetry into

the Boussinesq model for wave simulation. This is because the computed bathymetry

has some discrepancies compared to real bathymetry, and hence the near bottom veloci-

ties based on computed bathymetry will have discrepancies compared to measured bot-

tom velocities, and in turn it will affect the bathymetry computation for the next step.

Both model A and model B are utilized to simulate the event from September 23 1:00am

to September 30 1:00am. The following parameters are used in the models: time step

for waves ∆t = 0.1s, spatial step ∆x = 1m. the time step for the bottom boundary

layer model ∆tbbl = 0.1s, vertical spatial step ∆z = 3mm, bottom roughness Ks is

set to be Ks = 25d, sediment diameter d = 0.2mm, ǫB = 0.135, ǫS = 0.015, bottom

friction coefficient Cf = 0.009, acceleration term coefficient Ka = 0.001ms, accelera-

tion threshold ubtcr = 0.1m/s2, sediment fall velocity wfall = 2cm/s, sediment density

ρs = 2650kg/m3, water density ρ = 1000kg/m3, molecular viscosity ν = 1×10−6m2/s.

The sediment transport rates are calculated at every wave time step, and are accumulated

for 30 minutes before being used to update the bathymetry. The mean bottom velocity ub

is also obtained by a time average of ub for 30 minutes. Critical shield stress θc is obtained

through Shields diagram. During the simulation, a sponge layer is placed on the shoreface

to suppress the bathymetry change due to large, unrealistic transport rates calculated by

the model. The computation time is about 2 days for 8 days realization on a 2.4GHz,

8-CPU, Linux platform system using the f77 compiler.

Figure 8.92 shows the simulation from September 23, 1:00am to September 30,

1:00am with Model A and Model B. Both model A and model B predicted onshore bar

migration. Both models under-predicted the bar crest height, and model B is better than

model A in terms of crest height. Model A is better in terms of migration distance. One
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of the reason for under-prediction is due to the un-conserved mass of sand at the chosen

measured cross section, possibly due to horizontally 2-D effects in the field experiment

which can not be captured using a 1-D model.

Due to the computational cost, no nonlinear wave boundary layer model or k −
ǫ turbulence model computation results have been shown here. Previous studies (e.g.,

Henderson et al., 2004; Hsu et al., 2005) suggest that the nonlinear wave boundary layer

model will give a better prediction of bar crest height.

8.1.5 Offshore bar migration events

The same procedure of computation has been undertaken to simulate the offshore

bar migration event from 10/10/94 to 10/15/94, which include comparison of results ob-

tained by using the measured bottom velocity data of the 12 velocity gages and the Boussi-

nesq model predicted bottom velocity data, as well as continuously two-way coupled

model A and model B.

8.1.5.1 Data driven model by Hsu et al. (2005)

The results obtained based on the 12 gages velocity data from measurements and

from the Boussinesq wave model prediction are presented below. In figure 8.93 and 8.94,

the bathymetry change by model B using measured cross shore velocities are given com-

pared to measured bathymetry change. The bathymetry change due to current-related

qc gives large erosion of the sand bar trough and bar crest is moved offshore from gage

u14 (x = 240.55m) to u15 (x = 264.70m) with its height more than 1.5 meter. On the

other hand, the bathymetry change due to wave-related transport qw gives slight onshore

movement of the bar crest. The overall effect of qw and qc resulted in offshore migration

with the amount of erosion less than the measurements, i.e., the offshore bar migration is

underestimated.

Figure 8.95 and 8.96 show the bathymetry change modeled by model B using

near-bottom cross shore velocities provided by the Boussinesq model. The bathymetry
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Figure 8.92: Bedform change using coupled Boussinesq model and sediment transport

model (dash-dotted line: measured bathymetry at 09/23/94 1:00am; thin

solid line: measured bathymetry at 09/30/94 1:00am; dash line: model A

bathymetry at 09/30/94 1:00am; thick solid line: model B bathymetry at

09/30/94 1:00am)
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change due to qc also reflects offshore bar migration with the onshore side of the bar

crest eroded and the offshore side of the bar crest accreted. The magnitude of offshore

migration is substantially smaller than the results given by model using measured near-

bottom velocity in figure 8.94. This is due to the underestimate of near-bottom mean

current by the Boussineq model. The wave-related transport qw gives slightly onshore

bar migation as the same as the simulation using measured near-bottom velocity in figure

8.94. Overall results given by qc+qw gives offshore bar migration. The overall magnitude

of offshore bar migration is very limited. This agreement of these offshore migration

events should be improved by an undertow model that can simulate the vertical structure

of the cross shore circulation.

8.1.5.2 Model results by FUNSEDI1D1.0

For this case, the same setting of parameters as the simulation of the onshore

migration events are used. There is also a sponge layer on the shoreface to suppress

bathymetry change in the swash zone. The model and data comparison of the bathymetry

change is shown in figure 8.97.

The measured data show a large distance of offshore movement and depression

of the bar. Yet the model A and B show poor agreement with the measurement. The

model results also show loss of sand due to the fact that no offshore migration is obtained,

and modeled sediments are transported onshore into the swash zone and are absorbed by

the sponge layer. An attempt has been made to carry out the simulation without the

sponge layer onshore, but these failed due to complicated near shoreline bathymetry that

is generated. The sediment transport processes within the swash zone are still highly

difficult to model with the current method due to the missing of important physics such

as crossshore grain size distribution. The failure of producing offshore bar migration is

mainly due to severe underestimate of the near bed undertow current because the model

using measured velocity series does show offshore bar migration.
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Figure 8.93: Offshore bar migration predicted using measured velocities during

10/10/1994 1:00am to 10/15/1994 1:00am; circles: measured bathymetry;

triangles: predicted bathymetry using total transport qc+qw by (8.3); pluses:

predicted bathymetry using current-related transport qc only; stars: pre-

dicted bathymetry using wave-related transport qw only
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Figure 8.94: Offshore bar migration predicted using measured velocities during

10/10/1994 1:00am to 10/15/1994 1:00am, circles: measured bathymetry

(dash line indicates the measured bathymetry on 10/10/1994 1:00am, solid

line indicates the measured bathymetry on 10/15/1994 1:00am); triangles:

predicted bathymetry using total transport qc + qw by (8.3); pluses: pre-

dicted bathymetry using current-related transport qc only; stars: predicted

bathymetry using wave-related transport qw only;
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Figure 8.95: Offshore bar migration predicted using Boussinesq model velocities dur-

ing 10/10/1994 1:00am to 10/15/1994 1:00am; circles: measured bathym-

etry; triangles: predicted bathymetry using total transport qc + qw by (8.3);

pluses: predicted bathymetry using current-related transport qc only; stars:

predicted bathymetry using wave-related transport qw only
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Figure 8.96: Offshore bar migration predicted using Boussinesq model velocities during

10/10/1994 1:00am to 10/15/1994 1:00am, circles: measured bathymetry

(dash line indicates the measured bathymetry on 10/10/1994 1:00am, solid

line indicates the measured bathymetry on 10/15/1994 1:00am); triangles:

predicted bathymetry using total transport qc + qw by (8.3); pluses: pre-

dicted bathymetry using current-related transport qc only; stars: predicted

bathymetry using wave-related transport qw only;
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Figure 8.97: Bedform change using coupled Boussinesq model and sediment transport

model (dash-dotted line: measured bathymetry at 10/10/94 1:00am; thin

solid line: measured bathymetry at 10/16/94 1:00am; dash line: model A

bathymetry at 10/16/94 1:00am; thick solid line: model B bathymetry at

10/16/94 1:00am)
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Test Hm0(m) Tp(s) D50(mm) Wave Type Duration(hr)

Test 1c 0.6 8.0 0.2 irregular 13

Test 1b 1.4 5.0 0.2 irregular 18

Table 8.6: Test conditions of LIP11D experiment

8.2 LIP11D Lab Experiment Test

Although extensive efforts have been made to model offshore bar migration events

during the Duck 94 experiments, the outcome is less than satisfactory primarily due to the

under-prediction of the undertow currents and also due to the fact that there is substan-

tial amount of impact by longshore sediment transport processes during 10/10/1994 to

10/16/1994. Hence, we further test the model with LIP11D lab experiment data (Roelvink

and Reniers 1995; Arcilla et al. 1994). We test the model with two tests (Test1b and

Test1c) that were also selected by Rakha et al. (1997) for their model validation.

8.2.1 Layout of the experiments and wave conditions

The experiments were carried out within the framework of the European Large

Installation Plan (LIP) with the purpose of obtaining detailed measurements of hydrody-

namics and sediment transport in the surf zone. The experimental facility is the Delft

Hydraulics’ Delta Flume shown in figure 8.98. The flume is about 220 meters long, with

a deep end of 4 meters still water depth. A plane beach starts at 20 meters from the wave

paddles on the left.

The test conditions are listed in table 8.6, where Hm0 is the spectral estimate of

significant wave height, Tp is peak wave period, D50 is median sand diameter.

The bed profiles at 3 different test wavehours for Test 1b and Test 1c are shown in

figure 8.99 and figure 8.100 respectively. Test 1b is a strongly breaking wave condition

case and the profile is eroded. Test 1c is a moderate wave condition case and the profile

is accreted.

260



7.0

0.0

distance from wave paddle (m) 

x

4.0

15010050 200

z
 (

m
)

Figure 8.98: Schematic layout of the LIP11D experiments.

8.2.2 Model data comparison of waves and currents

During both Test 1b and Test 1c, 10 pressure gages are mounted at x = 20m, 65m,

100m, 115m, 130m, 138m, 145m, 152m, 160m and 170m to measure the instantaneous

pressure fluctuations, and the free surface elevation is inferred from these pressure mea-

surements. We will show the model data comparisons of the significant wave height Hm0

and setup for wavehour 9 of Test 1b (test code #1b0909) and wavehour 7 of Test 1c (test

code #1c0706).

In addition to the model wave height and setup validation, the vertical structure

of the mean current is collected through 4 different wavehour model tests for Test 1c and

Test 1b separately. The vertical profiles of velocities were measured by an array of EMF

current meters mounted on a carriage towed to different x locations at different wavehours

shown in table 8.7.

The following parameters are used for the Boussinesq model FUNWAVE1D2.0:

(1) for Test 1b, ∆t = 0.025sec, ∆x = 0.5m; the roller shape parameters (see Appendix)

are φB = 16◦ and φ0 = 10◦, t∗ = 3.0sec and fδ = 1.1; (2) for Test 1c, ∆t = 0.025sec,
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Figure 8.99: Bed profiles during Test 1b; top panel: overall bed profile; bottom panel:

closer view of the offshore bar movement from wavehour 7 to wavehour 18

Testcode Wavehour X location (m)

#1b1102 11 65

#1b1213 12 102

#1b1706 17 138

#1b0707 7 145

#1c0102 1 65

#1c0313 3 102

#1c0706 7 138

#1c0807 8 145

Table 8.7: EMF current meter locations during different test wavehours
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Figure 8.100: Bed profiles during Test 1c; top panel: overall bed profile; bottom panel:

closer view of the onshore bar movement from wavehour 1 to wavehour

10
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∆x = 0.5m; φB = 16◦ and φ0 = 10◦, t∗ = 3.5sec, fδ = 1.0.

The modeled wave height and setup are compared to measured data in figure 8.101

and figure 8.102. The model results match with the measured data very well except near

the numerical wave maker due to cutoff of high frequency energy (see Appendix). For

#test1b0909, waves break from the toe of the beach and wave height decreases monoton-

ically from x = 20m to x = 180m. The maximum wave setup is about 5cm. For

#test1c0706, waves are smaller, and wave shoaling dominated the process from offshore

to the crest of the sand bar. Further inshore of the bar crest, waves break and are dissipated

rapidly. The maximum wave setup is about 3cm.

The modeled mean flow results are shown in comparison with data in figure 8.103

and figure 8.104. The undertow currents are small for Test 1c (less than 0.15m/s). On

the other hand, the undertow currents are stronger for Test 1b (maximum value is about

0.3m/s). The model assumes a vertically constant return flow. The measurements show

a large variation over the depth at x = 138m and x = 145m where waves break strongly.

Hence the predicted value is much less than the measured maximum value that occurs near

the bottom. For the Test 1b wavehour 17 (testcode #1b1706), at x = 138m, the upper

most EMF current gage is out of water, and no measured and modeled data are plotted.

The second EMF current gage is slightly below wave trough. Visual inspection of figure

8.103 shows that vertical integration of measured undertow is about 0.3m/s× 0.7m/2 =

0.105m2/s, and the vertical integration of modeled undertow is about 0.17m/s×0.7m =

0.119m2/s. This indicates that although the model does not correctly predict the vertical

structure of the undertow currents, it gives the overall return flow mass flux close to the

measurements. For x = 145m of Test 1b wavehour 7 (testcode #1b0707), the upper

most EMF current gage is above the wave trough level, but not totally out of water, and

it picks up onshore surface currents due to wave breaking and wave skewness. The same

visual inspection also indicates that the model predicts correct return flow mass flux. For

Test 1c wavehour 7 (testcode #1c0706), the beach is accreted and the bar crest is higher
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Figure 8.101: Model data comparison of wave height and setup for Test 1b
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Figure 8.102: Model data comparison of wave height and setup for Test 1c
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Figure 8.103: Model data comparison of the vertical structure of undertow for Test 1b;

data (o); model (∆)

compared to Test 1b, and at x = 138m, which is at the bar crest location, the first EMF

current gage is totally above waves, and the second EMF gage (0.7m from the bottom) is

close to mean water level, and it picks up the onshore surface current as well. For Test 1c

wavehour 8 (testcode #1c0807), The first EMF gage is also out of water level, and there

are no measured and modeled data.
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Figure 8.104: Model data comparison of the vertical structure of undertow for Test 1c;

data (o); model (∆)
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8.2.3 Erosional case: Test 1b

During the Test 1b experiments, a wave gage WHM03 was placed at the toe of

the slope x = 20m and the surface elevation history was continuously recorded with a

sampling frequency of 10Hz from wavehour 7 to wavehour 17. Hence, here we choose

to model the hydrodynamics and the bathymetry change from wave hour 7 to wave hour

17 with both sediment model A and model B. The simulation parameters of waves for

both model A and model B are set as: time step for waves ∆t = 0.025s, spatial step

∆x = 0.5m, surface roller geometry parameters are φB = 16◦, φ0 = 10◦, t∗ = 3.0s, fδ =

1.1. For model A sediment transport, the bottom friction coefficient Cf = 0.003, bedload

effectiveness ǫB = 0.135, suspended load effectiveness ǫS = 0.010, bed porosity np =

0.4, sediment internal friction angle φ = 32◦, sediment median diameter d50 = 0.2mm,

terminal velocity wfall = 2cm/s, sediment density ρs = 2650kg/m3, water density

ρ = 1000kg/m3, water molecular viscosity ν = 1.0 × 10−6m2/s. The acceleration term

coefficient is Ka = 0.0002ms, and the critical acceleration threshold is ubtcr = 0.5m/s2.

For mode B sediment transport, the 2DHV linear bottom boundary layer model is used

to obtain bottom shear stress τb. The parameters for the bottom boundary layer model

are: ∆tbbl = 0.005s, ∆z = 3mm, rough wall boundary condition for the bed boundary

is used with a roughness Ks = 25d50 (Long et al. 2004; Hsu et al. 2005) and velocity

match condition for the top boundary of the boundary layer is used. The bedlevel is

updated every 448 seconds using the Euler-WENO scheme. The undertow current ub for

the calculation of qc is also by a time average of near bed velocity ub(x, t) over a period

of 448 seconds.

The bedlevel predicted at the end of wavehour 17 by model A is shown along with

the measured bedlevel in figure 8.105. In the figure panel (a), the modeled bedlevel is

simulated using the full formula by (8.2). In the figure panel (b), the modeled bedlevel

is due to the Bagnold formula. In the figure panel (c), the modeled bedlevel is due to the
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acceleration term solely. From the figure, we see that the measured bedlevels show a pro-

nounced offshore bar movement with the bar crest height increased slightly. The modeled

results due to the Bagnold component show a larger distance of offshore bar migration

compared to measurements and the bar height is also decreased. On the other hand, the

modeled results due to the acceleration component give slight onshore bar movement.

The overall model A by both the Bagnold formula and the ad hoc acceleration term gives

offshore bar migration for the bar and also accretion further inshore of the bar trough. The

model gives qualitative agreement of the bar migration, but the quantitative comparison

is poor.

The model B results are shown in figure 8.106. Here, the transport rate consists

of a wave-related component qw by Meyer-Peter-Müller formula and a current-related

component qc by Bailard (1981) as is described in (8.3). In figure 8.106, panel (a) shows

the overall prediction, panel (b) shows the prediction due to qw and panel (c) shows the

prediction due to qc. The results show that the qw gives offshore movement of the bar

and also some accretion further inshore of the bar trough. The current-related transport qc

gives small magnitude of offshore bar movement. The overall results are similar to model

A, namely, offshore bar migration is predicted, inshore bar trough accretion appears in

contrast to measured bathymetry and the bar crest height is underestimated.

8.2.4 Accretional case: Test 1c

During the Test 1c experiments, a wave gage WHM01 was placed at the toe of the

slope x = 20m and the surface elevation history was recorded with a sampling frequency

of 10Hz from wavehour 1 to wave hour 10. This data series can be used as the input

for the numerical wavemaker in Boussinesq model. Hence, here we choose to model the

hydrodynamics and the bathymetry change from wave hour 1 to wave hour 10.

The simulation parameters both model A and model B are set similar to test 1b

except that here t∗ = 3.5s, fδ = 1.0, the bottom friction coefficient Cf = 0.001 with

less turbulent intensity for smaller wave height compared to test 1b, the acceleration term
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Figure 8.105: Bedlevel change by model A for test 1b; (a) bedlevel due to both Bag-

nold formula and acceleration term; (b) bedlevel due to Bagnold formula;

(c)bedlevel due to acceleration term; model bedlevel (solid line); mea-

sured initial bedlevel (dash-dotted line); measured final bedlevel (dash

line)
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Figure 8.106: Bedlevel change by model B for test 1b; (a) bedlevel due to both qw and qc;
(b) bedlevel due to qw; (c)bedlevel due to qc; model bedlevel (solid line);

measured initial bedlevel (dash-dotted line); measured final bedlevel (dash

line)
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coefficient Ka = 0.0004ms, with the critical acceleration threshold ubtcr = 0.3m/s2.

The bedlevel is updated also every 448 seconds using the Euler-WENO scheme. The

undertow current ub for the calculation of qc is again obtained by a time average of near

bed velocity ub(x, t) over a period of 448 seconds.

The model A results are shown in Figure 8.107. The measurements show onshore

migration of the sandbar with a increased bar height. From panel (b) of the figure, we see

that the Bagnold formula show almost no change to the bedlevel. Panel (c) shows that the

transport due to the acceleration term gives correct bar movement direction and distance.

The overall results given in panel (a) show accretional onshore bar movement. Again, the

bar crest height is underestimated by the model.

The model B results are shown in Figure 8.108. Similar to the results of model

A, the current-related component predicted by the Bailard formula in panel (c) shows no

effect on bathymetry. But the qw predicted by the Meyer-Peter-Müller formula and the

bottom boundary layer model shows accretion of the beach profile at the offshore side of

the sand bar. There is also some erosion further inshore of the bar trough which results

to a increase of the bar crest height. The onshore bar migration event is predicted but the

scene is more complicated than the measurements.
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Figure 8.107: Bedlevel change by model A for test 1c; (a) bedlevel due to both Bagnold

formula and acceleration term; (b) bedlevel due to Bagnold formula; (c)

bedlevel due to acceleration term; model bedlevel (solid line); measured

initial bedlevel (dash-dotted line); measured final bedlevel (dash line)
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Figure 8.108: Bedlevel change by model B for test 1c; (a) bedlevel due to both qw and qc;
(b) bedlevel due to qw; (c) bedlevel due to qc; model bedlevel (solid line);

measured initial bedlevel (dash-dotted line); measured final bedlevel (dash

line)
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Chapter 9

CONCLUSION AND FUTURE DEVELOPMENT

9.1 Conclusion

1D and 2D Boussinesq wave models FUNWAVE1D2.0 and FUNWAVE2D2.0 are

established based on FUNWAVE1.0 with extensions of multiple reference levels, one-

way numerical wave maker, surface roller induced undertow and film layer modeling of

moving shoreline. The 2D model is also based on a staggered grid system with curvilinear

coordinates for complex nearshore geometries.

Finite difference schemes for bed updating in morphological modeling are sys-

tematically studied and compared. The Euler-WENO scheme is introduced to model

morphology and is proved to have significant advantages over conventional schemes.

Classical turbulent wave boundary layer models based on mixing length turbu-

lence closure are set up to model near bottom boundary layer structure due to unsteady

free stream velocity and pressure gradient.

Sediment transport formulas for nearshore wave and current climate are reviewed

and discussed. An ad-hoc extension to the Bagnold (1966) formula is proposed by includ-

ing an acceleration term in light of Drake and Calantoni (2001). The wave boundary layer

model is also coupled with Meyer-Peter-Müller formula for sediment transport coupled

with the Boussinesq wave model instantaneously.

Phase-resolving sediment transport and morphology models FUNSEDI1D and

FUNSEDI2D are set up by coupling the Boussinesq model, bottom boundary model, in-

stantaneous sediment transport formulas and Euler-WENO morphology model together.
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The Duck’94 field experimental data are used to test the model and investigate

the onshore and offshore bar migration events due to different wave conditions. The

Boussinesq model gives good agreement of wave spectra, bottom velocity variance and

skewness with the data. The undertow (mean current) in the October 10 - 16 run is

underestimated. Boundary layer model driven using measured near bed velocity show

identical results with Hsu et al. (2004). The Boussinesq model data driven sediment

transport shows good agreement with data for the onshore bar migration event, but poor

agreement for the offshore bar migration event due to substantial underestimate of near-

bed undertow current.

The LIP11D laboratory data are also utilized to test the phase resolving sediment

transport model driven by the Boussinesq wave model. Both erosional and accretional

cases are investigated with qualitative agreement to measured data. The behavior of the

beach profile predicted by the model is complex and sensitive to the sediment transport

formula, which indicate that much research on detailed mechanism of the sediment trans-

port is warranted. The framework of phase-resolving coupling between the sediment

transport model and the Boussinesq wave model accomplished during this research gives

a unique opportunity to investigate future proposed transport formulas in great detail with

affordable computation cost.

9.2 Perspective on Proposition of New Transport Formulas

The transport formulas in Chapter 3 and Chapter 8 are based on steady or quasi-

steady assumptions or ad-hoc modifications to include unsteady flow effects. They are

subjected to testing with modern experimental results conducted in the last decade or will

be tested in the future. In this section, we share some remarks on the proposition of new

transport formulas in the hope that can include unsteady flow features that are physically

based that we think are significant to sediment transport near bed.

Bagnold (1966) assumed that sediments are transported along with energy loss of
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free stream fluid particle kinetic energy. The kinetic energy loss is assumed to be propor-

tional to the bottom shear stress multiplied by the velocity of particles. For steady flow,

the bottom shear stress can be related to free stream velocity through the quadratic law of

friction. The velocity of sediment particles is assumed to be proportional to free stream

velocity. Hence the resulted transport formula is in the form of cubic power function of

the free stream velocity.

Meyer-Peter and Muller (1948) formula uses purely bottom shear stress, i.e. only

friction velocity u∗, which is consistent to Bagnold (1966) approach for steady flow be-

cause friction velocity u∗ is related to free stream velocity linearly. When free stream

velocity is replaced by u∗, and further replace u∗ using shear stress
√

2τb/ρ according to

its definition, the Bagnold (1966) formula for bedload has the form of Meter-Peter and

Muller (1948).

For sediment transport under waves, it is not justified to use quadratic parame-

terization of friction to relate bottom shear stress to free stream velocity. Hence there

is no linear correlation between bottom friction velocity and free stream velocity. Both

formulas that are in the form of power function of free stream velocity ub (Bagnold 1966)

or friction velocity u∗ (Meyer-Peter and Muller 1948 ) are not valid for wave conditions

unless the quasi-steady assumption is used.

Madsen and Grant (1976) and Bailard (1981) neglected the effect of wave hori-

zontal asymmetry and phase lag between fluid flow and bottom shear stress, because they

also applied the quasi-steady assumption in calculating bottom shear stress.

Malarkey and Li (2003) presented a quasi-steady, one-dimensional, vertical model

of unsteady sheet flow by using empirical assumptions for time-varying sheet-flow layer

thickness for sheet flow layer and time-varying equivalent bed roughness for suspen-

sion layer. The instantaneous sheet flow layer thickness is assumed to be proportional

to Shields parameter similar to Wilson (1989) and Sumer et al. (1996). The sediment
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concentration within the sheet flow layer is assumed to be quadratic function of nor-

malized vertical distance from stationary bed according to measurements by Horikawa

(1982). For unsteady flows, quadratic profile of concentration seems to be more realistic

than linear profile of Wilson (1989) and Pugh and Wilson (1999) for steady flow. The

velocity profile of sediments within the sheet flow is assumed to be linear suggested by

Sumer et al. (1996) from steady flow experiments. The erosion depth is determined by

conservation of sediment in the vertical direction which may be questionable for unsteady

flows.

Soulsby and Damgaard (2005) took another approach. In their study, a sheet flow

sediment transport formula has been proposed based on the assumption that concentra-

tion within the sheet flow is linear, and the velocity profile of sediments is an algebraic

equation of normalized vertical coordinate. It is also assumed that the top of the sheet

flow velocity is proportional to friction velocity. Thickness of the sheet flow is obtained

from the Coulomb friction assumption. We think that it is necessary to identify the pick-

up layer and the sheet-suspension layer from the substantial observations discussed in the

previous section. Since in the sheet-suspension layer, the sediment motion is dominated

by turbulence instead of inter-granular collision. Especially for fine sediments, the tur-

bulence suspension becomes more important and the total sheet flow thickness is much

larger than the pick-up layer thickness, meaning that the thickness of the sheet-suspension

layer is much larger than the pick-up layer. We suggest that the pick-up layer thickness

can be obtained from an analysis based on Coulomb friction law, while the thickness of

the sheet-suspension layer should be analyzed with considerations of the turbulent mix-

ing and vertical velocity w especially for fine sands. Also it should be acknowledged that

the velocity and concentration distribution within the pick-up layer and sheet-suspension

layer is different due to different mechanisms evident from observations.

Based on the discussion from both experimental observations (Sumer et al., 1996;
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Flores and Sleath, 1998; Pugh and Wilson, 1999; O’Donoghue and Wright, 2004; Dohmen-

Janssen et al., 2001; Dohmen-Janssen and Hanes, 2002; Liu and Sato, 2005) and recent

development of sediment transport models (Hsu, 2002; Soulsby and Damgaard, 2005),

we suggestthat a new sediment transport formula for sheet flow should consider the fol-

lowing:

The sheet follow sediment transport should consist of two sub layers due to differ-

ent mechanisms: the lower pick-up layer and the upper sheet-suspension layer. The lower

pick-up layer is developed due to near bed friction and strong inter-granular collisions.

The upper sheet-suspension layer is due to turbulence and vertical acceleration of flow in

the bottom boundary layer. For the sheet-suspension layer, one should consider the im-

portance of acceleration of flow especially in asymmetric sawtooth shape wave conditions

nearshore. The following assumptions may be used based on the above discussions of the

experimental observations (a) in the pick-up layer, assume concentration convex; (b) in

the sheet-suspension layer, assume concentration concave; (c) In the pick-up layer, as-

sume linear distribution of streamwise velocity; (d) in the sheet-suspension layer, assume

logarithmic distribution of streamwise velocity; (e) assume erosion depth (pick-up layer

thickness) based on Coulomb theory from grain shear; (f) obtain suspension layer thick-

ness through the vertical balance of sand mass or turbulent diffusion; (g) assume interface

concentration 0.5Cb, where Cb is the densely packed bed volumetric concentration; (h)

use matching of sand velocity to obtain roughness of suspension layer logarithmic dis-

tribution. (i) try to include phase lag in the concentration profile in the vertical direction

compared to pick-up layer, and this might be quite difficult; (j) sum up the transport in the

pick-up layer and the sheet-suspension layer to get total transport rate of the sheet flow.

9.3 Comments on Future Development

Although the Boussinesq model is quite powerful in predicting waves both in 1D

cross shore and 2D horizontal problems, for periodic and transient waves, monochromatic

and random wave field in the nearshore region, the inclusion of undertow prediction in
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this research is through empirical modeling of surface roller and the vertical structure of

the mean current in the vertical is not modeled through a dynamic approach. Future re-

search on extending the Boussinesq model to incorporate undertow prediction seamlessly

is needed. The research by Veeramony and Svendsen (2000) and Svendsen et al. (2000)

extended Boussinesq models with inclusion of rotational flow in the vertical plane, and

inclusion of this approach may enable us to provide cross shore circulation accurately.

In the swash zone, fluid velocity and bed shear stresses are large due to diminish-

ing water depth. This can result to large sediment transport rate and quick response of

the beach profile to the water motion. The speed of bed level change can be in the same

magnitude of the surface water level. Hence, the fixed bottom assumption in the Boussi-

nesq theory should be discarded. Sediment transport formulas should also take account

of sediment size distribution.

This research has set up the FUNSEDI2D model framework but testing is unfin-

ished due to limited data availability and the large computation cost. This should be tested

extensively in the near future.

The majority of the difficulties are still related to developing a sediment transport

formula based on hydrodynamic quantities that can be applied for unsteady wave current

climate nearshore. To date, the cross shore sediment transport processes are still mod-

eled quite empirically with transport formulas based on quasi-steady assumptions and

limited experimental data for unsteady cases. The testing of model A and model B in the

Duck’94 experiment case and the LIP11D experiment case certainly shows us different

behavior for different formulas. Hence, much of the research effort should be devoted to

investigate newly proposed transport formulas such as Soulsby and Damgaard (2005) and

the approach based on the previous section. The entire system of the Boussinesq model,

wave boundary layer model, and Euler-WENO morphological scheme developed in this

research can be used to propose, test, and correct sediment transport formulas system-

atically for outside of the surf zone, inside of the surf zone and swash zone processes,
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cross shore and alongshore processes through a computer modeling approach in parallel

to experimental and theoretical efforts.
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Appendix A

A.1 Wave Maker Theory

The wave maker mechanism for the Boussinesq model is basically done by adding

a periodic forcing term to the equation. FUNWAVE 1.0 uses a two-way wave maker

where a forcing term symmetric about the central line of source region is added to the

continuity equation. Theory has been developed by Wei et al. (1999), basically using

Fourier transform method to solve the linearized equation to obtain the transfer function

between the desired wave height and source strength. Chawla and Kirby (2000) developed

a one-way wave maker by further adding a forcing term anti-symmetric about the central

line of source region, and Doppler effects of background current is also taken into account.

Here the derivation of Chawla and Kirby (2000) is repeated for the linearized version of

Boussinesq Equation, but no Doppler effect is considered for simplicity.

The 1D linearized version of Boussinesq Equation (2.261) (2.267) with constant

depth h is:

COM:

ηt + h∇ · ũ + µ2α1h
3∇2(∇ · ũ) = 0 (A.1)

EOM:

ũt + ∇η + µ2αh2∇(∇ · ũt) = 0 (A.2)

where α = B−1
2

, α1 = α + 1/3 = B/2 − 1/6. Since h is constant and equation is

linearized, here B is also a constant, means that the moving part in B has been taken out,

hence α and α1 are constant too. zc in (2.179) is also set to be constant for linearization

and finally disappears here. The upper two equations are of the same form of Chawla and
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Kirby (2000) equation (4a) and (4b), except that the current U there is now set to be zero

and the definition of α is different. So all the derivations in Chawla and Kirby (2000) can

be used here.

When introducing source functions in both the continuity and momentum equa-

tions, we get (in dimensional form):

COM:

ηt + h∇ · ũ + α1h
3∇2(∇ · ũ) = fs(x, y, t) (A.3)

EOM:

ũt + g∇η + αh2∇(∇ · ũt) = −g∇ps(x, y, t). (A.4)

Then, fs and ps can be rewritten by introducing Fourier transforms in time and in the

spanwise direction:

fs(x, y, t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f̂s(x, λ, ω)ei(λy−ωt)dλdω (A.5)

ps(x, y, t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
p̂s(x, λ, ω)ei(λy−ωt)dλdω (A.6)

where f̂s and p̂s are transfer function of fs and ps respectively. Following Chawla and

Kirby (2000) derivations, we obtain:

f̂s = D1e
−βsx2

(A.7)

p̂s = D2xe
−βsx2

(A.8)

where

D1 =
−iη0e

(
l2
1

4βs
)

a1

√

π
βs

(2ω)(1 − αh2k2)
(A.9)

and

D2 =
−2βsD1

l1ω
(A.10)

βs =
80

γ2
rL

2
(A.11)
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where η0 is the desired wave amplitude, ω is the angular frequency of a single wave

component, L is typical wave length, γr is a parameter to control the source region width

W :

W = γr
L

2
. (A.12)

a1 is given by

a1 =
i

As(l1 − l2)(l1 + l2)2l1
(A.13)

where

l1 = (
Cs −

√

C2
s − 4AsEs

2As

)1/2 (A.14)

l2 = (
Cs +

√

C2
s − 4AsEs

2As

)1/2 (A.15)

and l21 + λ2 = k2, here l1 = k cos θ and λ = k sin θ, where θ is the wave direction relative

to x axis and k is the wavenumber given by dispersion relation:

ω2 = ghk2 1 − α1k
2h2

1 − αk2h2
(A.16)

As, Cs and Es are given by

As = α1gh
3 (A.17)

Cs = gh+ ω2αh2 − 2α1λ
2gh3 (A.18)

Es = ω2[1 − α(λh)2] − ghλ2[1 − α1(λh)
2] (A.19)

By using the dispersion relation, a1 can be simplified to:

a1 =
−ik

2(ω2 − α1gh3k4) cos θ
(A.20)

then D1 can be written as:

D1(η0, ω, θ) =
η0 cos θe(

l2
1

4βs
)(ω2 − α1gh

3k4)

ωk
√

π
βs

(1 − αh2k2)
(A.21)

Then the source function fs(x, y, t) is calculated by inverse discrete Fourier trans-

form for directional random waves:
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fs(x, y, t) = Real{ 1

4π2

∫ ∞

−∞

∫ ∞

−∞
f̂s(x, λ, ω)ei(λy−ωt)dλdω}

=
M
∑

i=1

N
∑

j=1

1

2
f̂s(x, λj, ωi, η0ij)[e

i(λjy−ωit+φ0) + c.c.]

=
M
∑

i=1

N
∑

j=1

f̂s(x, λj, ωi, η0ij) cos(λjy − ωit+ φ0) (A.22)

where φ0 is a random phase given from 0 to 2π, η0ij is the wave amplitude for the i′th

frequency component and the j′th directional component given by selected power density

spectrum

η0ij = η0(ωi, θj)

=
√

2S(ωi)G(θj)dωidθj

=
√

2S(ωi)dωi ( if only frequency spectrum exists)

=
√

2G(θj)dθj ( if only directional spectrum exists) (A.23)

where S(ωi) ,G(θj) are power density spectrum. ps(x, y, t) is calculated in the same way:

ps(x, y, t) =
M
∑

i=1

N
∑

j=1

p̂s(x, λj, ωi, η0ij) cos(λjy − ωit+ φ0) (A.24)

A.2 Algorithms for Surface Roller Detection

The geometry of the free surface roller for a spilling breaker is described in Schäffer

et al. (1993) and also shown in the figure A.1.

The roller thickness r is the distance between the free surface elevation η and the

arc ADB in the figure A.1. The starting point A and the ending point B for the roller is

found by a) locating point A through a search of the surface points where the slope angle

is the same as a breaking criterion angle φ; b) extending the tangential line backward from

A to intersect with the surface elevation at point B. The arc ADB is made by expanding
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B

bottom

SWL
D

C

r

Figure A.1: Roller geometry for a spilling breaker

the thickness between the line AB and the surface elevation η by a factor of fδ. The

breaking criterion angle φ is given by

tanφ = tanφ0 + (tanφB − tanφ0) exp[−ln2
t− tB
t∗

], (A.25)

where φB is the initial breaking angle, φ0 is the final breaking angle, t∗ is the duration

of a breaking event such that the angle φ decreases from φB to φ0 gradually. tB is the

starting time of a breaking event and t − tB is the age of a roller. Typical value of φB is

on the order of 15 to 20 degree, and typical value of φ0 is on the order of 7 to 15 degree.

The transition time t∗ is approximately 5
√

d/g where d is the still water depth and g is

gravitational acceleration. fδ is the roller shape factor with typical range 1.0 ≤ fδ ≤ 1.6.

In order to track the initial breaking time tB of a breaker, a variable ntbr(i) is given to

keep the record of the time step that a roller initially forms for each point i in the domain.

The following Fortran subroutine get roller() is listed to obtain the roller thickness for

every point 1 ≤ i ≤ mx− 1.

Subroutine get_roller(etas, ntbr, Mw, Roller

& , mx, ITMAX, Roughness, it, Cph, phi_0

& , phi_B, T_star)

!

!Obtain surface roller geometry --- Roller(i)

!also phase speed Cph(i) within the roller

!
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c----- dummy variables---

INTEGER mx !number of grids

INTEGER ITMAX !maximum number of time step

INTEGER it !current time step

DOUBLEE PRECISION etas(mx) !free surface

& ,Mw(mx) !depth integrated flux mˆ2/s

& ,Roller(mx) !roller thickness,>0: x+ wave

! <0: x- wave

& ,Roughness !film layer thickness

& ,ntbr(mx) !initial breaking time

!step of a roller

& ,Cph(mx) !phase speed of roller

DOUBLE PRECISION Phi_0, !final breaking angle

& Phi_B, !initial breaking angle

& T_star !transition time of the breaker

& !criterion

c----- Local Variables----

INTEGER i, !temp index

& i1,

& iA, !grid index of roller front

& iB, !grid index of roller tail

& nage, !the time step that the roller

!is generated

& IDRollerCheck(mx) !a flag to mark whether a point

!has been checked in

!the algorithm of searching for roller

! IDRollerCheck(i) =1: yes, already searched,

! or no need to check

! =0: no, not checked yet

DOUBLE PRECISION

& ,eta_x(mx) !local slope of free

!surface eta: d(eta)/dx

& ,Csign !local phase speed direction

!of the free surface

!Csign = 1 : waves going to right

!Csign =-1 : waves going to left

DOUBLE PRECISION yA, yB, yi1, yi2 !temp variables

DOUBLE PRECISION ddd

INTEGER ntbrmin

DOUBLE PRECISION grav !gravitational acceleration
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c---------

grav = 9.81

!

! before start searching for roller, set IDRollerCheck =0

! for all points except film layer also initialize thickness

!

DO i=1, mx

IF(h(i).GE.Roughness*2)THEN

! only search for roller out of film layer

IDRollerCheck(i)= 0

ELSE

! mark, not necessary to search for roller in film layer

IDRollerCheck(i)= 1

ENDIF

! set the roller thickness to be zero

Roller(i) = 0.d0

ENDDO

!

! find the critical breaking angle phi for a roller by eqn (3.1)

! of Schaffer et al. (1993)

!

DO i=2,mx-2

! find the initial breaking time of a roller by

! searching around neighbors

nage=MIN(ntbr(i+1),ntbr(i-1))

nage=MIN(nage,ntbr(i))

IF(ntbr(i).LT.ITMAX)THEN

! already a broken wave, roller exists

tanphi(i)=TAN(Phi_0)+(TAN(Phi_B)-TAN(Phi_0))

& *EXP(-LOG(2.0)*(it-nage)*dt/T_star)

ELSE

! not a breaking wave yet, set as phi_B

tanphi(i)=TAN(Phi_B)

ENDIF

ENDDO

!

! Find the local free surface slope d(eta)/dx

! using forth order finite difference

!

DO i=1,mx

IF(i.eq.1)THEN
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eta_x(i)=1.0/(12.0*dx)

& *(-25.0*etas(1)+48.0*etas(2)-36.0*etas(3)

& +16.0*etas(4)-3.0 *etas(5))

ELSEIF(i.eq.2)THEN

eta_x(i)=1.0/(12.0*dx)

& *(- 3.0*etas(1)-10.0*etas(2)+18.0*etas(3)

& - 6.0*etas(4)+ etas(5))

ELSEIF(i.eq.mx-1)THEN

eta_x(i)=1.0/(12.0*dx)

& *( 3.0*etas(mx)+10.0*etas(mx-1)-18.0*etas(mx-2)

& +6.0*etas(mx-3)- etas(mx-4))

ELSEIF(i.eq.mx)THEN

eta_x(i)=1.0/(12.0*dx)

& *( 25.0*etas(mx) -48.0*etas(mx-1)+36.0*etas(mx-2)

& -16.0*etas(mx-3)+ 3.0*etas(mx-4))

ELSE

eta_x(i)=1.0/(12.0*dx)

& *( 8.0*etas(i+1)-8.0*etas(i-1)-etas(i+2)+etas(i-2))

ENDIF

ENDDO

!

! search backward from grid i=mx-1 to i= 2

! look for roller that rides on waves propagating

! in positive x direction

!

iB= mx-1 !assume the tail of right

!most roller is at mx-1

50 DO i=mx-1,2,-1

!find the propagation direction of waves at i approximately

Csign= Dsign(1.d0, ( Mw(i+1)

& -Mw(i-1)

& )

& *(etas(i+1)-etas(i-1))

& )

IF(Csign.GE.0.and.IDRollerCheck(i).eq.0)THEN

!do the search for positive x going wave and unsearched points

IF(eta_x(i) .le.-tanphi(i).AND.

& eta_x(i+1).gt.-tanphi(i))THEN

iA=i !find point A of the roller

!the front index of the roller

yA=etas(i) !record the height of A
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nage= ntbr(iA)

IF(nage.eq.ITMAX) THEN

ntbr(iA) = it

ENDIF

ntbrmin = ITMAX

!

!search back and find corresponding roller thickness

!

DO i1=iA,MAX(iA-mx,2),-1

!the elevation of intersection line at i1

yi1=yA+(iA-i1)*dx*tanphi(iA)

!the elevation of intersection line at i1-1

yi2=yA+(iA-(i1-1))*dx*tanphi(iA)

IF(etas(i1-1).ge.yi2)then

!

!the thickness of the roller (counted as positive)

! for waves propagating in +x direction

!

Roller(i1)=max(0.d0,(etas(i1)-yi1)*f_delta)

!i1 is within a roller for sure,

!no need to search for it any more

IDRollerCheck(i1) = 1

!trying to track the minimum breaking time

ntbrmin = min (ntbrmin,ntbr(i1))

ENDIF

!try to locate the tail point B of the roller

iB=i1

IF( (etas(i1)-yi1).ge.0.and.

& (etas(i1-1)-yi2).lt.0)THEN

iB=i1 !found point B of the roller

GOTO 100

ENDIF

ENDDO

100 iB = max(1, iB)

DO i1= iA+1,iB-1,-1

!record the starting breaking time of this breaker

!even this breaking changes it’s location and spread (iA, iB)

ntbr(i1) = ntbrmin

IDRollerCheck(i1) = 1

ENDDO

ENDIF
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ENDIF

ENDDO !go to next search from the new iB to i=2

!

!search forward from grid i=2 to i= mx-1,

!look for roller that rides on waves propagating

!in x- direction

!

iB= 2 !assume the tail of right most roller is at 2

DO i=2,mx-1,1

!find the propagatin direction of waves at i approximately

Csign= Dsign(1.d0, ( Mw(i+1)

& - Mw(i-1)

& *(etas(i+1)-etas(i-1))

& )

!do the search for negative x going wave and unsearched points

IF(Csign.LT.0.and.IDRollerCheck(i).eq.0)THEN

IF(eta_x(i) .le.tanphi(i).and.

& eta_x(i+1).gt.tanphi(i))then

!find point A of the roller !the front index of the roller

iA=i

yA=etas(i) !record the height of A

nage= ntbr(iA)

IF(nage.eq.ITMAX) THEN

ntbr(iA) = it

ENDIF

ntbrmin = mx

!

!search forward and find corresponding roller thickness

! DO i1=iA,MIN(iA+mx,mx-1),1

!the elevation of intersection line at i1

!the elevatio of intersection line at i1+1

yi1=yA+(i1-iA)*dx*tanphi(iA)

yi2=yA+((i1+1)-iA)*dx*tanphi(iA)

IF(etas(i1+1).ge.yi2)THEN

!the thickness of the roller

!counted as negative for waves propagating in x- direction

Roller(i1)=-MAX(0.d0,(etas(i1)-yi1)*f_delta)

!i1 is within a roller for sure,

!no need to search for it any more

IDRollerCheck(i1) = 1

!trying to track the minimum breaking time
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ntbrmin = min (ntbrmin,ntbr(i1))

ENDIF

!try to locate the tail point B of the roller

iB=i1

IF( (etas(i1)-yi1).ge.0.and.

& (etas(i1+1)-yi2).lt.0)THEN

iB=i1 !found point B of the roller

GOTO 200

ENDIF

ENDDO

200 iB = min(mx-1, iB)

DO i1= iA-1,iB+1,+1

!record the starting breaking time of this breaker

!even this breaking changes it’s location and spread (iA, iB)

ntbr(i1) = ntbrmin

IDRollerCheck(i1) = 1

ENDDO

ENDIF

ENDIF

ENDDO !go to next search from the new iB to i=mx-1

!

! Set the initial breaking

! to be infinity for points not in roller

!

DO i=1,mx

IF(IDRollerCheck(i).eq.0)THEN

ntbr(i)=ITMAX

ENDIF

ENDDO

!

! Find local phase speed roughly

!

Do i=2,mx-1

Csign = Dsign(1.d0,roller(i))

ddd = etastill(i)-zb(i)

ddd = max(ddd, Roughness)

!Csign>0 , waves go x+ direction

!Csign<0 , waves go x- direction

Cph(i) = Csign*sqrt(grav*ddd)

ENDDO

Cph(1) = Cph(2)
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Cph(mx-1) = Cph(mx)

RETURN

End

294



A.3 Cyclically Tridiagonal Matrix Solver

When periodic boundary conditions are used in the modeling practice, such as

lateral open boundaries for a domain consists of infinitely long beach, the so called cycli-

cally tridiagonal matrix equation system will be obtained and need to be solved using

a special method that involves the Sherman-Morrison formula (Sherman and Morrison,

1949).

Let the cyclically tridiagonal system be

Qx = ψ (A.26)

where Q is a cyclically tridiagonal matrix

Q =



































β1 γ1 0 0 ... α1

α2 β2 γ2 0 ... 0

0 α3 β3 γ3 ... 0

... ... ... ... ... ...

0 0 ... αN−1 βN−1 γN−1

γN ... 0 0 αN βN



































, (A.27)

x = (x1, x2, x3, ..., xN)T is the unknowns vector, and ψ = (ψ1, ψ2, ψ3, ..., ψN)T . In

order to solve (A.26), the following strategy can be used. Let

u =























































β

0

...

0

γN























































(A.28)
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and

v =























































1

0

...

0

α1/β























































, (A.29)

where β can be any real number other than β1, then we have

u × vT =





















β 0 ... α1

0 ... ... 0

... ... ... ...

γN 0 ... α1γN/β





















. (A.30)

Let A = Q − u × vT , we have

A =





























β1 − β γ1 0 ... 0

α2 β2 γ2 ... 0

... ... ... ... ...

0 ... αN−1 βN−1 γN−1

0 ... 0 αN βN − α1γN/β





























. (A.31)

Here A is the conventional tridiagonal matrix. According to Sherman-Morrison formula,

we can solve the following conventional tridiagonal systems to obtain solution for (A.26)

Ay = ψ (A.32)

Az = u (A.33)

where y = (y1, y2, ..., yN)T and z = (z1, z2, ..., zN)T . Finally the solution of x is

obtained by

x = y − (
v · y

1 + v · z)z (A.34)

where v · y = v1y1 + v2y2 + ...+ vNyN and v · z = v1z1 + v2z2 + ...+ vNzN .

A Fortran 77 subroutine cyclic() for solving the cyclically tridiagonal system

(A.26) is given here.
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Subroutine cyclic (alpha, beta,gamma, b, x, N)

!---solve the following cyclic tridiagonal equation---

!*********************************************************!

!* *!

!* (B1 C1 A1 ) (x1) (b1) *!

!* (A2 B2 C2 ) (x2) (b2) *!

!* ( A3 B3 C3 ) (x3) (b3) *!

!* ( A4 B4 C4 ) (x4)==== *!

!* ( A5 B5 C5 ) ... ==== ... *!

!* ( ... ... ... ) ... ... *!

!* ( AN-1 BN-1 CN-1) (xN-1) (bN-1)*!

!* (CN AN BN ) (xN) (bN) *!

!* *!

!*********************************************************!

! where A’s are alpha, B’s are beta, C’s are gamma

c----dummy variables--

Integer N

double precision alpha(N), beta(N),gamma(N),b(N),x(N)

c----local variables--

double precision betaPrime(N),u(N),z(N),c,fact

c----

c=-beta(1) !the minus sign makes

!sure betaPrime(1) non zero

!the first tridiagonal element

betaPrime(1) = beta(1) - c

do i=2,N-1,1

betaPrime(i)=beta(i)

enddo

!the last tridiagonal element

betaPrime(N) = beta(N) - alpha(1) * gamma(N)/c

!solve for u and store it in x

call tri_ge(alpha, betaPrime, gamma, b, x, N)

!first u

u(1) = c;

do i=2,N-1

u(i)=0.d0

enddo

!last u

u(N) = gamma(N)

!solve for z

call tri_ge(alpha, betaPrime, gamma, u, z, N)
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fact = (x(1) + alpha(1) * x(N) / c)

& / (1.0 + z(1) + alpha(1) * z(N) / c)

!construct final results

do i=1,N

x(i) =x(i)- fact * z(i)

enddo

Return

End

Subroutine tri_ge(alpha,beta,gamma,b, x, N)

!----solve the following conventional tridiagonal system without

!----changing coefficients in A, B and C

!*********************************************************!

!* *!

!* (B1 C1 ) (x1) (b1) *!

!* (A2 B2 C2 ) (x2) (b2) *!

!* ( A3 B3 C3 ) (x3) (b3) *!

!* ( A4 B4 C4 ) (x4)==== *!

!* ( A5 B5 C5 ) ... ==== ... *!

!* ( ... ... ... ) ... ... *!

!* ( An-1 Bn-1 Cn-1) (xn-1) (bn-1)*!

!* ( An Bn ) (xn) (bn) *!

!* *!

!* *!

!*********************************************************!

! where A’s are alpha, B’s are beta, C’s are gamma

c----dummy variables---

integer N

double precision alpha(N),beta(N), gamma(N), b(N), x(N)

c-----local variables

double precision betaPrime(N), bPrime(N)

double precision coeff

integer i

!Perform forward elimination

betaPrime(1) = beta(1)

bPrime(1) = b(1)

do i=2,N
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coeff = alpha(i) / betaPrime(i-1)

betaPrime(i) = beta(i) - coeff * gamma(i-1)

bPrime(i) = b(i) - coeff * bPrime(i-1)

enddo

! Perform back substitution

x(N) = bPrime(N) / betaPrime(N)

do i=N-1,1,-1

x(i) = (bPrime(i) - gamma(i) * x(i+1))

& / betaPrime(i)

enddo

return

End

A.4 Notes on Generalized Curvilinear Coordinate System

In this section, we present basic but important definitions and relations for gener-

alized curvilinear coordinate system.

gik = gi · gk =
∂yi∂yj

∂xi∂xk
(A.35)

gik = gi · gk (A.36)

δj
i = gi · gj = gj · gi =











1, i = j

0, i 6= j
(A.37)

ui = gikuk (A.38)

ui = giku
k (A.39)

gi = gijgj (A.40)

gi = gijg
j (A.41)

gikg
jk = δj

i =















1 0 0

0 1 0

0 0 1















(A.42)
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∣

(A.43)

The last two equations give

gij = (grsgmn − grngms)/g0 (A.44)

where


























i = 1 : r = 2,m = 3; j = 1 : s = 2, n = 3

i = 2 : r = 2,m = 1; j = 2 : s = 3, n = 1

i = 3 : r = 1,m = 2; j = 3 : s = 1, n = 2

(A.45)

Gradient, Divergence and Curl

If φ,u, ˜̃
T represent scalar, vector, and second order tensor respectively, then we

have the following relations for calculating gradient, divergence and curl in curvilinear

coordinate system

∇φ ≡ gij ∂φ

∂xj
gi =

∂φ

∂xj
gj ≡ φ!i (A.46)

∇ · u = ui
,i =

1√
g0

∂

∂xi
(
√
g0u

i) (A.47)

∇u = uk
,igkg

i, (A.48)

where

uk
,i =

∂uk

∂xi
+ Ck

jiu
j (A.49)

ui
,j =

∂ui

∂xj
+ Ci

kju
k (A.50)

and

Ci
kj =

∂2yl

∂xk∂xj

∂xi

∂yl

(A.51)

is called the Christoffel symbol of the second kind.

uk,j = gksu
s
,j (A.52)

˜̃
T = T ijgigj ⇒ ∇ · ˜̃

T = T ik
,k gi (A.53)
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˜̃
T = T i

jgig
j ⇒ ∇ · ˜̃

T = gjkT i
j,kgi (A.54)

˜̃
T = Tijg

igj ⇒ ∇ · ˜̃
T = gjkTij,kg

i (A.55)

where

T ij
,k =

∂T ij

∂xk
+ Ci

mkT
mj + Cj

mkT
im (A.56)

Tij,k =
∂Tij

∂xk
− Cm

ikTmj − Cm
jkTim (A.57)

T i
j,k =

∂T i
j

∂xk
+ Ci

mkT
m
j − Cm

jkT
i
m (A.58)

Then

T ik
,k =

∂T ik

∂xk
+ Ci

mkT
mk + Ck

mkT
im

=
∂T ik

∂xk
+ Ck

mkT
im + Ci

mkT
mk

=
∂T ik

∂xk
+
∂ln

√
g0

∂xm
T im + Ci

mkT
mk

=
1√
g0

∂

∂xk
(
√
g0T

ik) + Ci
mkT

mk (A.59)

Then,

∇ · ˜̃
T = T ik

,k gi

= (
1√
g0

∂

∂xk
(
√
g0T

ik) + Ci
mkT

mk)gi (A.60)

∇× u =
1√
g0

einmum,ngi (A.61)

where einm is permutation tensor (Warsi, 1999). Also we have another permutation tensor

eijk given by

gi × gj =
√
g0eijkg

k (A.62)

and

einmeijk = δn
j δ

m
k − δn

k δ
m
j (A.63)

301



Thus,

(∇× u) × v = (
1√
g0

einmum,ngi) × vjgj

=
1√
g0

um,nv
jeinmgi × gj

=
1√
g0

um,nv
jeinm√g0eijkg

k

= um,nv
j(einmeijk)g

k

= um,nv
j(δn

j δ
m
k − δn

k δ
m
j )gk

= (uk,jv
j − uj,kv

j)gk

= (gksu
s
,jv

j − gjsu
s
,kv

j)gklgl

= (δl
su

s
,jv

j − gjsg
klus

,kv
j)gl

= (ul
,jv

j − gjsg
klus

,kv
j)gl (A.64)

This equation gives the cross product in terms of contravariant components.

For a 2-D curvilinear coordinate system, we have simplified formulas for all the

basic geometric quantities gij,
√
g0, C

k
ij as the following:

gik =
∂yj∂yj

∂xi∂xk
(A.65)

g11 = x2
ξ1

+ y2
ξ1

(A.66)

g22 = x2
ξ2

+ y2
ξ2

(A.67)

g12 = g21 = xξ1xξ2 + yξ1yξ2 (A.68)

g0 = J2 = g11g22 − g12g12 (A.69)

J = xξ1yξ2 − xξ2yξ1 =
√
g0 (A.70)

g11 =
g22

g0

(A.71)

g22 =
g11

g0

(A.72)

302



g12 = −g12

g0

= g21 (A.73)

C1
11 =

1

2
g11∂g11

∂ξ1
+ g12∂g12

∂ξ1
− 1

2
g12∂g11

∂ξ2
(A.74)

C2
11 =

1

2
g12∂g11

∂ξ1
+ g22∂g12

∂ξ1
− 1

2
g22∂g11

∂ξ2
(A.75)

C2
22 = g12∂g12

∂ξ2
− 1

2
g12∂g22

∂ξ1
+

1

2
g22∂g22

∂ξ2
(A.76)

C1
22 = g11∂g12

∂ξ2
− 1

2
g11∂g22

∂ξ1
+

1

2
g22∂g22

∂ξ2
(A.77)

C2
12 = C2

21 =
1

2
g12∂g11

∂ξ2
+

1

2
g22∂g22

∂ξ1
(A.78)

C1
12 = C2

21 =
1

2
g11∂g11

∂ξ2
+

1

2
g12∂g22

∂ξ1
(A.79)

The relationships between Cartesian velocity (ucart, vcart) and Contravariant ve-

locity (u1, u2) = (u, v) are important for interpretation of model results and they given

here as

ucart =
Dx

Dt
= u1xξ1 + u2xξ2 = uxξ1 + vxξ2 (A.80)

vcart =
Dy

Dt
= u1yξ1 + u2yξ2 = uyξ1 + vyξ2 (A.81)

where ∂x
∂t

= 0 and ∂y
∂t

= 0 are utilized for non-time-varying curvilinear coordinate system

(ξ1, ξ2).

Vice versa, we have

u = u1 =
yξ2ucart − xξ2vcart√

g0

(A.82)

v = u2 =
xξ1vcart − yξ1ucart√

g0

(A.83)
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A.5 Numerical Estimation of Bedform Phase Speed

For the 1-D case, equations (5.2) and (5.62) give:

C(zb) =
∂q
∂x

(1 − np)
∂zb

∂x

(A.84)

For 2D case, the upper equation can be generalized (assuming that the bedform propaga-

tion direction is collinear as the gradient direction of zb) as:

C = −
∂zb

∂t

|∇zb|2
∇zb =

∇ · q
(1 − np)|∇zb|2

∇zb, (A.85)

where C = (Cx, Cy) is a vector. Equations (A.84) and (A.85) give the calculations of

phase speed in terms of the spatial derivatives. For the 1-D case, Hudson (2001) employed

a central difference scheme to estimate C numerically:

Ci =
qi+1 − qi−1

(1 − np)(zbi+1 − zbi−1)
, zbi+1 6= zbi−1. (A.86)

Unfortunately, the upper equation can be used only when zbi+1 6= zbi−1 and it will produce

quite inaccurate approximation of the phase speed when the bed level gradient approaches

zero or changes sign. For monotonic beach profile, this case doesn’t occur. For bedforms

with sand bars, ripples or flat sea bed, it is prone to have significant errors.

In the WENO scheme implementation of this study, it is important that upwinding

is used, and the easiest and the most inexpensive way to achieve upwinding is to compute

the Roe speed (Shu 1997, page 22):

ai+ 1

2

=
qi+1 − qi

(1 − np)(zbi+1 − zbi)
. (A.87)

If ai+1/2 ≥ 0, the wind blows from the left to the right, and corresponding bedform phase

speed is also from left to right. Otherwise, if ai+1/2 < 0, the wind is blowing from right

to left. In computer programming, since only the sign of ai+1/2 is needed, we can simply

use sign((qi+1 − qi)(zbi+1 − zbi)) to avoid division by a small number when (zbi+1 − zbi)

approaches zero. Because WENO only requires the sign of the phase speed, it is much

304



more stable than schemes that require accurate estimate of phase speed both in magnitude

and sign.
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[171] Schäffer, H. A., P. A. Madsen and R. Deigaard, A Boussinesq model for waves

breaking in shallow water, Coastal Engineering, 20, pp 185-202, 1993
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