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ABSTRACT 
 
 

The majority of the world shoreline is currently suffering from erosion.  Beach erosion will 

become more serious if the mean sea level rise accelerates because of the greenhouse effect.  

Nourishment and maintenance of wide sand beaches for developed coastal communities will 

become more expensive unless the present nourishment design method is improved by the 

development of a reliable morphological model.  Concurrently, the recent increase of coastal 

storm damage demands the development of numerical models for predicting the damage 

progression and breaching of coastal stone structures and earthen levees during extreme storms.  

This report summarizes our continuing effort to improve our quantitative understanding of 

beach morphology and structural damage progression with the goal to develop simple and 

robust models that are suited for engineering applications.  Our effort for the last 10 years has 

produced the cross-shore numerical model CSHORE which is presently limited to the case of 

alongshore uniformity.  CSHORE consists of the following components: a combined wave and 

current model based on time-averaged continuity, cross-shore and longshore momentum, wave 

action, and roller energy equations; a sediment transport model for suspended sand and bedload; 

a permeable layer model to account for porous flow and energy dissipation; empirical formulas 

for irregular wave runup, overtopping and seepage; and a probabilistic model for an 

intermittently wet and dry zone for the purpose of predicting wave overwash and structural 

damage progression.  The wet and dry model, which is the latest addition to CSHORE, is 

calibrated and verified using our 107 small-scale tests for irregular wave overtopping and 

overflow on a levee as well as 118 Dutch tests for low-exceedance wave overtopping in which 

velocities and water depths were measured on the crest and landward (inner) slope of dikes.  

Finally, the computer program CSHORE is explained so that a user of CSHORE will be able to 

use it effectively and modify it if necessary.  In the near future, CSHORE will be compared 

with wave overwash experiments and structural damage progression experiments. 
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1.  Introduction 
 
A sand beach with a wide berm and a high dune provides storm protection and damage 

reduction, recreational and economical benefits and biological habitats for plants and animals.  

Most sandy beaches are eroding partly due to sea level rise.  Beach nourishment is widely 

adopted to maintain a wide beach for a developed coastal community if a suitable beachfill is 

available in the vicinity of an eroding beach.  Empirical methods based on field data have been 

developed for the design of beach fills (Coastal Engineering Manual 2003).  The design of the 

cross-shore beachfill profile is normally based on the concept of an equilibrium beach profile.  

The alongshore spreading of the beachfill is generally predicted using a one-line model coupled 

with the CERC formula or the formula by Kamphuis (1991) for the longshore sediment transport 

rate.  These simple beachfill design methods have been criticized and a number of more process-

based models have been proposed.  However, the process-based models may not necessarily be 

more accurate at present.   

 

Sediment transport is caused by the combined action of waves and currents.  Our capabilities of 

predicting wave and current fields have improved steadily for the last 30 years.  However, the 

predictive capability of sediment transport on beaches has not improved much.  The major 

reason for this discrepancy is that no dynamic equation is available to describe the motion of a 

large number of sediment particles.  Consequently, sediment transport models are essentially 

empirical and dependent on reliable sediment transport data.  Unfortunately, sediment dynamics 

on beaches are highly complex and involve wide ranges of morphological scales in time and 

space.  Correspondingly, available sediment transport models have become more complex and 

less transparent.  We have tried to synthesize available data and formulas in order to develop 
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simple and transparent formulas for the cross-shore and longshore transport rates of suspended 

sand and bedload on beaches.  The simple formulas need to include basic sediment dynamics 

sufficiently so that the formulas will be applicable to small-scale and large-scale laboratory 

beaches and eventually prototype beaches.  Furthermore, the morphological model should be 

very efficient computationally because the model will need to be calibrated and verified using 

extensive data sets.  The hydrodynamic input required for the morphological model should be 

limited to the quantities that can be predicted routinely and reliably.  These considerations have 

guided our development of the cross-shore model CSHORE presented in this report. 

 

Coastal storm damage has been increasing mostly due to the recent growth of coastal population 

and assets and possibly due to the intensification of hurricanes caused by global warming.  

Coastal structures including earthen levees (dikes) have been designed conventionally for no 

storm surge overflow and minor wave overtopping during a design storm.  Empirical formulas 

for wave overtopping rates are used for a preliminary design where EurOtop Manual (2007) 

recommends the latest formulas.  Physical model testing is normally conducted in a wave flume 

or basin for a detailed design.  Various numerical models have also been developed to predict 

detailed hydrodynamics that are difficult to measure even in a laboratory (Kobayashi and Otta 

1987; Kobayashi 1999; van Gent 2001).  The latest numerical models for hydrodynamics are 

reviewed by Losada et al. (2008) and Neves et al. (2008).  However, our improved predictive 

capabilities for the hydrodynamics have not really improved our predictive capability for damage 

progression partly because damage to a coastal structure is cumulative (Melby and Kobayashi 

1998).  As a result, a performance or risk-based design of a coastal structure relies on empirical 

formulas for damage (e.g., Kobayashi et al. 2003).  This practical difficulty is similar to that for 
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sediment transport on beaches.  Alternatively, the computationally-efficient CSHORE calibrated 

with extensive data sets has been developed for the design of inclined structures with relatively 

small wave reflection where damage progression models for stone structures and earthen levees 

will be developed by modifying the sediment transport model in this report.  The eventual goal is 

to predict the performance of an inclined structure located on a movable bottom. 

 
 
2.  History of CSHORE Development 
 
The history of the cross-shore model CSHORE is summarized to provide an overview of 

CSHORE and acknowledge a number of graduate students and visiting scientists who 

contributed to the development of CSHORE.  The present version of CSHORE includes the 

various capabilities added to the initial CSHORE developed in 1998.  The different stages of the 

CSHORE development are summarized in the following where the detail of each stage can be 

found in the listed publications. 

 

The cross-shore model CSHORE was initially developed to predict the cross-shore 

transformation of irregular nonlinear waves using the time-averaged continuity, momentum and 

wave energy equations together with a non-Gaussian probability distribution of the free surface 

elevation.  However, empirical formulas of limited generality were required to parameterize the 

wave nonlinearity.  The present version of CSHORE is based on linear wave theory and the 

Gaussian probability distribution to reduce the degree of empiricism. 

• Kobayashi, N., Herrman, M.N., Johnson, B.D., and Orzech, M.D. (1998).  “Probability 

distribution of surface elevation in surf and swash zones.”  J. Waterway, Port, Coastal and 

Ocean Eng., 124(3), 99-107. 
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• Kobayashi, N., and Johnson, B.D. (1998).  “Computer program CSHORE for predicting 

cross-shore transformation of irregular breaking waves.”  Res. Rep. No. CACR-98-04, Center 

for Applied Coastal Research, Univ. of Delaware, Newark, Del. 

• Johnson, B.D., and Kobayashi, N. (1998).  “Nonlinear time-averaged model in surf and swash 

zones.”  Proc. 26th Coastal Eng. Conf., ASCE, 2785-2798. 

• Kearney, P.G., and Kobayashi, N. (2000).  “Time-averaged probabilistic model for irregular 

wave runup on coastal structures.”  Proc. 27th Coastal Eng. Conf., ASCE, 2004-2017. 

• Johnson, B.D., and Kobayashi, N. (2000).  “Free surface statistics and probabilities in surf 

zones on beaches.”  Proc. 27th Coastal Eng. Conf., ASCE, 1022-1035. 

 

The next stage of the CSHORE development was motivated by the need of a computationally-

efficient time-averaged model that can be used for the design of porous coastal structures.  The 

linear-wave version of the initial CSHORE was modified to account for the effects of a 

permeable layer for the case of normally incident waves.  The permeable version of CSHORE 

was called CSHOREP.  The impermeable and permeable versions of CSHORE have been 

merged in the present CSHORE in order to expand the range of practical applications.  The 

permeability effects are extended to obliquely incident waves in the present CSHORE. 

• Meigs, L.E., and Kobayashi, N. (2004).  “Time-averaged model for irregular breaking waves 

on porous structures and beaches.”  Res. Rep. No. CACR-04-02, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Meigs, L.E., Kobayashi, N., and Melby, J.A. (2004).  “Cobble beaches and revetments.”  

Proc. 29th Coastal Eng. Conf., World Scientific, 3865-3877. 
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• de los Santos, F.J., and Kobayashi, N. (2005).  “Irregular wave setup and runup on cobble 

beaches and revetments.”  Res. Rep. No. CACR-05-06. Center for Applied Coastal Res., Univ. 

of Delaware, Newark, Del. 

• Ota, T., Kobayashi, N., and Kimura, A. (2006).  “Irregular wave transformation over 

deforming submerged structures.”  Proc. 30th Coastal Eng. Conf., World Scientific, 4945-

4956. 

• de los Santos, F.J., Kobayashi, N., and Losada, M. (2006).  “Irregular wave runup and 

overtopping on revetments and cobble beaches.”  Proc. 30th Coastal Eng. Conf., World 

Scientific, 4667-4679. 

•  de los Santos, F.J., and Kobayashi, N. (2006).  “Irregular wave seepage and overtopping of 

cobble beaches and revetments.”  Res. Rep. No. CACR-06-01, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Kobayashi, N., Meigs, L.E., Ota, T., and Melby, J.A. (2007).  “Irregular breaking wave 

transmission over submerged porous breakwaters.”  J. Waterway, Port, Coastal, Ocean Eng., 

133(2), 104-116. 

• Kobayashi, N., and de los Santos, F.J. (2007).  “Irregular wave seepage and overtopping of 

permeable slopes.”  J. Waterway, Port, Coastal, Ocean Eng., 133(4), 245-254. 

• Ota, T., Matsumi, Y., Kobayashi, N., and Kimura, A. (2007).  “Influence of damage 

progression on performance of rubble mound breakwaters.”  Proc. Coastal Structures’2007, 

Venice, Italy. 

• Kobayashi, N., de los Santos, F.J., and Kearney, P.G. (2008).  “Time-averaged probabilistic 

model for irregular wave runup on permeable slopes.”  J. Waterway, Port, Coastal, Ocean 

Eng., 134(2), 88-96. 
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Concurrently, the impermeable version of CSHORE was extended to predict the cross-shore and 

longshore transport rates of suspended sand and bedload on beaches as a part of the MORPHOS 

project of the U.S. Army Engineer Research and Development Center.  MORPHOS is the 

world’s first attempt at developing an open-source, physics-based computer model of coastal 

storms and their impact that can be used by the broad coastal community.  A series of extensions 

were made in the following publications to make CSHORE more versatile and better verified. 

• Zhao, H., and Kobayashi, N. (2005).  “Suspended sand transport in surf zones on equilibrium 

beaches.”  Res. Rep. No. CACR-05-01, Center for Applied Coastal Res., Univ. of Delaware, 

Newark, Del. 

• Kobayashi, N., Zhao, H., and Tega, Y. (2005).  “Suspended sand transport in surf zone.”  J. 

Geophys. Res., 110, C12009, doi:10.1029/2004JC002853. 

• Agarwal, A., and Kobayashi, N. (2005).  “Time-averaged model for longshore current and 

sediment transport in surf and swash zones.”  Res. Rep. No. CACR-05-07, Center for Applied 

Coastal Res., Univ. of Delaware, Newark, Del. 

• Schmied, L., Kobayashi, N., Payo, A., and Puleo, J.A. (2006).  “Cross-shore sediment 

transport and beach profile change.”  Res. Rep. No. CACR-06-03, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Schmied, L.D., Kobayashi, N., Puleo, J.A., and Payo, A. (2006).  “Cross-shore suspended 

sand transport on beaches.”  Proc. 30th Coastal Eng. Conf., World Scientific, 2511-2523. 

• Agarwal, A., Kobayashi, N., and Johnson, B.D. (2006). “Longshore suspended sediment 

transport in surf and swash zones.”  Proc. 30th Coastal Eng. Conf., World Scientific, 2498-

2510. 
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• Payo, A., Kobayashi, N., and Kim, K.H. (2006).  “Beach nourishment strategies.”  Proc. 30th 

Coastal Eng. Conf., World Scientific, 4129-4140. 

• Kobayashi, N., Agarwal, A., and Johnson, B.D. (2007).  “Longshore current and sediment 

transport on beaches.”  J. Waterway, Port, Coastal, Ocean Eng., 133(4), 296-304. 

• Buck, M., Kobayashi, N., Payo, A., and Johnson, B.D. (2007).  “Experiments and numerical 

model for berm and dune erosion.”  Res. Rep. No. CACR-07-03, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Gencarelli, R., Johnson, B.D., Kobayashi, N. and Tomasicchio, G.R. (2007).  “Dune erosion 

and breaching.”  Proc. Coastal Structures’2007, Venice, Italy. 

• Kobayashi, N., Payo, A., and Schmied, L. (2008).  “Cross-shore suspended sand and bedload 

transport on beaches.”  J. Geophys. Res., 113, C07001, doi:10.1029/2007JC004203. 

• Kobayashi, N., Buck, M., Payo, A., and Johnson, B.D. (2008).  “Berm and dune erosion 

during a storm.”  J. Waterway, Port, Coastal, Ocean Eng., 134 (in press). 

• Kobayashi, N., Payo, A., and Johnson, B.D. (2008).  “Suspended sand and bedload transport 

on beaches.”  Handbook of Coastal and Ocean Engineering, World Scientific, Singapore (in 

press). 

• Payo, A., Kobayashi, N., and Yamada, F. (2008).  “Suspended sand transport along pier 

depression.”  J. Waterway, Port, Coastal, Ocean Eng. (submitted). 

• Buck, M., Kobayashi, N., Payo, A., and Johnson, B.D. (2008).  “Berm and dune erosion.”  

Proc. 31th Coastal Eng. Conf., World Scientific (accepted). 

• Gencarelli, R., Tomasicchio, G.R., Kobayashi, N., and Johnson, B.D. (2008).  “Beach profile 

evolution and dune erosion due to the impact of Hurricane Isabel.”  Proc. 31th Coastal Eng. 

Conf., World Scientific (accepted). 
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• Gencarelli, R., Tomasicchio, G.R., Kobayashi, N., and Johnson, B.D. (2008).  “Effects of 

Hurricane Isabel along the North Carolina coastline: Beach profile evolution and dune 

erosion.”  Proc. 3rd International Short Conf. on Applied Coastal Res., Lecce, Italy (accepted).  

 

The following papers summarized the progress of the CSHORE development concisely. 

• Kobayashi, N. (2006).  “Time-averaged wave models for coastal structures and sediments.”  

Proc. 2nd International Short Course and Workshop on Coastal Processes and Port Eng., 

Cosenza, Italy, 61-75.  

• Kobayashi, N. (2008).  “Efficient wave and current models for coastal structures and 

sediments.”  Nonlinear Wave Dynamics.  World Scientific, Singapore, 1-21. 

• Kobayashi, N., Figlus, J., and Buck, M. (2008).  “Beach nourishment and dune erosion.”  

Proc. 3rd Internal Short Conf. on Applied Coastal Res., Lecce, Italy (in press). 

 

The ongoing extension of CSHORE includes the prediction of the combined wave overtopping 

and overflow on levees and dunes, and eventually the erosion and breaching prediction of 

earthen levees and sand dunes.  The initial results are presented in the following publications: 

• Farhadzadeh, A., Kobayashi, N., Melby, J.A., and Ricottilli, C. (2007).  “Experiments and 

numerical modeling of wave overtopping and overflow on dikes.”  Res. Rep. No. CACR-07-

02, Center for Applied Coastal Res., Univ. of Delaware, Newark, Del. 

• Kobayashi, N., Farhadzadeh, A., and Melby, J.A. (2007).  “Structures of storm surge disaster 

prevention.”  Proc. 4th International Workshop on Coastal Disaster Prevention, Yokohama, 

Japan, 41-49. 
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• Farhadzadeh, A., Kobayashi, N., and Melby, J.A. (2008).  “Wave overtopping and overflow 

on inclined structures.”  Proc. 31st Coastal Eng. Conf., World Scientific (accepted). 

• Kobayashi, N., Farhadzadeh, A., and Melby, J.A. (2008).  “Combined wave overtopping and 

overflow on levees.”  J. Waterway, Port, Coastal, Ocean Eng. (submitted). 

 

In addition, CSHORE will be extended to predict the long-term (seasonal and yearly) cross-shore 

and longshore sediment transport rates on natural and nourished beaches.  The field data required 

for the calibration and verification for the long-term morphological model CSHORE has been 

obtained and analyzed in the following publications: 

• Figlus, J., and Kobayashi, N. (2007).  “Seasonal and yearly profile changes of Delaware 

beaches.”  Res. Rep. No. CACR-07-01, Center for Applied Coastal Res., Univ. of Delaware, 

Newark, Del. 

• Figlus, J., and Kobayashi, N. (2008).  “Inverse estimation of sand transport rates on nourished 

Delaware beaches.”  J. Waterway, Port, Coastal, Ocean Eng., 134(4), 218-225. 

• Figlus, J., and Kobayashi, N. (2008).  “Two-line model for inverse estimation of cross-shore 

and longshore transport rates on nourished beaches.”  31st Coastal Eng. Conf., World 

Scientific (accepted). 

 
 
3.  Wave and Current Models 
 
Cross-shore sediment transport on beaches has been investigated extensively (e.g., Kriebel and 

Dean 1985; van Rijn et al. 2003) but we still cannot predict beach profile evolution accurately.  

In order to improve our predictive capabilities, sediment transport models have become more 

sophisticated but less transparent.  For example, Thornton et al. (1996) and Gallagher et al. 
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(1998) used the energetics-based total load model of Bailard (1981) to explain the offshore 

movement of a bar at Duck, North Carolina during storms.  The onshore bar migration on the 

same beach was predicted by both Hoefel and Elgar (2003), using the skewed acceleration effect 

on bedload, and Henderson et al. (2004), using a suspended sediment model.  The roles of 

bedload and suspended load are not clear at present.  Kobayashi et al. (2008a) made an attempt 

to synthesize and simplify existing cross-shore sediment transport models with the aim of 

developing a simple and robust model that is suited for engineering applications including the 

berm and dune erosion.  This model has been extended to predict the cross-shore and longshore 

transport rates of bedload and suspended load under the combined wave and current action 

predicted by the time-averaged, probabilistic model by Kobayashi et al. (2007a).  The latest 

version of the numerical model CSHORE is explained in the following. 

 

Sediment transport on beaches is caused by the combined action of waves and currents.  The 

hydrodynamic input required for a sediment transport model depends on whether the sediment 

transport model is time-dependent (phase-resolving) or time-averaged over a number of waves.  

A time-dependent sediment transport model such as that by Kobayashi and Johnson (2001) is 

physically appealing because it predicts intense but intermittent sand suspension under irregular 

breaking waves (Kobayashi and Tega 2002).  However, the time-dependent model requires 

considerable computation time and is not necessarily more accurate in predicting slow 

morphological changes than the corresponding time-averaged model presented in the following.  

Horizontally two-dimensional wave and current models are presented first before the cross-shore 

model CSHORE based on the assumption of alongshore uniformity. 
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Fig. 1 shows obliquely incident irregular waves on an essentially straight shoreline where the 

cross-shore coordinate x is positive onshore and the longshore coordinate y is positive in the 

downwave direction.  The beach is assumed to be impermeable.  The depth-averaged cross-shore 

and longshore velocities are denoted by U and V, respectively.  Incident waves are assumed to be 

unidirectional with θ  = incident angle relative to the shore normal.  The height and period of the 

irregular waves are represented by the root-mean-square wave height Hrms and the spectral peak 

period Tp specified at the seaward boundary located at x = 0.  The wave angle θ is assumed to be 

in the range of |θ| < 90° to ensure that the incident waves propagate landward.  The wind speed 

and direction at the elevation of 10 m above the sea surface are denoted by W10 and θw, 

respectively. 

 

 
Fig. 1.  Definition sketch for incident irregular waves and wind on beach. 

 
 

The mean water depth h  is given by 

 ( )bh S zη= + −  (1) 



 16 

where η  = wave setup above the still water level (SWL); and S = storm tide above the datum z = 

0 which is assumed to be uniform in the computation domain.  Linear wave and current theory 

for wave refraction (e.g., Phillips 1977; Mei 1989; Dalrymple 1988) is used to predict the spatial 

variations of Hrms and θ.  The dispersion relation for linear waves is expressed as 

  

 ( ) ( )2 tanh ; cos sin /p x ykg kh k Q Q hω ω ω θ θ= = + +  (2) 

where ω = intrinsic angular frequency; k = wave number; g = gravitational acceleration; h  = 

mean water depth with the overbar indicating time-averaging; ωp = absolute angular frequency 

given by 2 /p pTω π= ; Qx and Qy = time-averaged volume flux per unit width in the x and y 

directions, respectively, and θ = incident wave angle.  Eq. (2) can be solved iteratively to obtain 

k and ω for known , , ,p xh Qω θ   and yQ .  The phase velocity C and the group velocity Cg are 

given by 

 
( )

1 2
/ ; ; 1

2 sinh 2
g

kh
C k C nC n

kh
ω

� �
� �= = = +
� �
� �

 (3) 

The wave angle θ is computed using the irrotationality of the wave number 

 ( ) ( )sin sin 0k k
x y

θ θ∂ ∂− =
∂ ∂

 (4) 

The root-mean-square wave height Hrms defined as 8rmsH ησ=  with ησ = standard deviation of 

the free surface elevation η is computed using the wave action equation 

 cos sin y B fx
g g

Q D DE Q E
C C

x h y h
θ θ

ω ω ω

� � +� � � �� �∂ ∂+ + + =−� �� � 	 
	 

∂ ∂� � � �� � � �

 (5) 

with 
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 2 21

8
rmsE g gHηρ σ ρ= =  (6) 

where E = specific wave energy; ρ = fluid density; and DB and Df = wave energy dissipation rate 

per unit horizontal area due to wave breaking and bottom friction, respectively.  The formulas for 

DB and Df are presented later in relation to the cross-shore model CSHORE. 

 

The time-averaged volume fluxes Qx and Qy in Eq. (2) are expressed as 

  

 ;x wx y wyQ hU Q Q hV Q= + = +  (7) 

with 

 
2 2cos sin

cos ; sinwx r wy r

g g
Q q Q q

C C
η ησ θ σ θ

θ θ= + = +  (8) 

where U andV  = time-averaged, depth-averaged velocities in the x and y directions; Qwx and Qwy 

= wave-induced volume fluxes in the x and y directions; ( )2 /g Cση  = volume flux due to linear 

waves propagating in the direction of θ ; and qr = volume flux of a roller on the front of a 

breaking wave.  The roller volume flux qr is estimated using the roller energy equation as 

explained by Kobayashi et al. (2005,2007a) 

 

 ( ) ( )2 2cos sinr r B rC q C q D D
x y

ρ θ ρ θ∂ ∂+ = −
∂ ∂

 (9) 

with 

 ( ); 0.1 0.1r r r r bD g q Sρ β β= = + ≥  (10) 
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 cos sinb b
b

z z
S

x y
θ θ∂ ∂= +

∂ ∂
 (11) 

where Dr = roller dissipation rate; �r = wave-front slope; Sb = bottom slope in the direction of 

wave propagation; and zb =  bottom elevation relative to the datum z = 0 with z = vertical 

coordinate taken to be positive upward.  The wave front slope �r is assumed to be 0.1 unless it is 

increased by the positive bottom slope Sb.   

 

The mean water depth h  and the current velocities U  and V  are computed using the time-

averaged continuity and momentum equations (Phillips 1977; Svendsen et al. 2002). 

 

 ( ) ( ) 0x yQ Q
x y

∂ ∂+ =
∂ ∂

 (12) 

  

 
2

x yx bx sx
wx

Q QQ
gh

x h y h x

η τ ττ
ρ ρ

� � � �∂ ∂ ∂+ + + = +	 
 	 

∂ ∂ ∂� �� �

 (13) 

  

 
2

x y y by sy
wy

Q Q Q
gh

x h y h y

τ τη τ
ρ ρ

� �� �∂ ∂ ∂+ + + = +	 
	 
 	 
∂ ∂ ∂� � � �
 (14) 

with 

 
2

xy wx wyxx wx
wx

S Q QS Q

x h y h
τ

ρ ρ

� � � �∂ ∂= − − − −	 
 	 
	 
 	 
∂ ∂� � � �
 (15) 

 
2

xy wx wy yy wy
wy

S Q Q S Q

x h y h
τ

ρ ρ

� � � �∂ ∂= − − − −	 
 	 
	 
 	 
∂ ∂� � � �
 (16) 
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 ( ) 2 1
cos ;

2
xx r r rS nE M E n M Cqθ ρ� �= + + − =	 


� �
 (17) 

 ( ) ( ) 2 1
cos sin ; sin

2
xy r yy rS nE M S nE M E nθ θ θ � �= + = + + −	 


� �
 (18) 

where �bx and �by = bottom shear stresses in the x and y directions; �sx and �sy = wind stresses on 

the sea surface in the x and y directions; and Sxx, Sxy and Syy = radiation stresses including the 

momentum flux Mr of a roller propagating with the phase speed C.  It is noted that the terms 

2 ,Q Q Qwx wx wy  and 2
Qwy  in Eqs. (15) and (16) included by Phillips (1977) are of 4-th order in terms 

of the wave height and normally neglected.  The present circulation model based on Eqs. (12) – 

(18) is a simplified version of SHORECIRC (Svendsen et al. 2002) for irregular waves where 

SHORECIRC assumes monochromatic waves.  The formulas for �bx, �by, �sx and �sy are presented 

later in relation to the cross-shore model CSHORE. 

 

A horizontally two-dimensional model C2SHORE has been developed in the MORPHOS project 

(Shi et al. 2008).  The directional spectral wave model STWAVE (Smith et al. 2001) is used to 

predict the wave transformation.  The wave-induced fluxes Qwx and Qwy and the radiation stresses 

Sxx, Sxy and Syy are computed from the predicted directional wave spectra.  The roller effects 

included in Eqs. (8), (17) and (18) are neglected.  The circulation model is based on Eqs. (12)– 

(16) with the formulas for �bx, �by, �sx and �sy used in CSHORE.  The wave and circulation models 

are coupled and run iteratively for several times.  The wave field is computed to estimate �wx and 

�wy given by Eqs. (15) and (16) for the circulation model which computes the wave setup and 

wave-induced currents.  An efficient finite difference method is used to solve Eqs. (12) – (14) 

and reduce the computation time considerably (Shi et al. 2007).  The iteration between the wave 

and circulation models is necessary in the region near and landward of the still water shoreline 
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where wave setup determines the mean water depth h  for the wave model.  Shi et al. (2008) 

compared C2SHORE with the morphological change data at the U.S. Army Corps of Engineers 

Field Research Facility (FRF) during Hurricane Isabel and found the need to model the effects of 

the FRF piling. 

 

4.  Combined Wave and Current Model CSHORE 
 
The cross-shore model CSHORE assumes alongshore uniformity but computes the wave and 

current fields simultaneously.  The depth-integrated continuity equation of water given by Eq. 

(12) requires that the cross-shore volume flux Qx is constant and equal to the wave overtopping 

rate qo at the landward end of the computation domain.  Eqs. (7) and (8) yield 

  

 
2

cos cosx r o

g
Q hU q q

C
ησ

θ θ= + + =  (19) 

 
2

sin siny r

g
Q hV q

C
ησ

θ θ= + +  (20) 

where h  = mean water depth; U  = mean cross-shore velocity; which is negative and offshore 

because cos 0θ >  if  0oq =  (no wave overtopping); g = gravitational acceleration; ση  = 

standard deviation of the free surface elevation η ; C = linear wave phase velocity in the mean 

water depth h  corresponding to the spectral peak period Tp; and qr = volume flux of a roller on 

the front of a breaking wave.  If the incident wave angle θ  is small, Eq. (20) can be 

approximated by yQ hV�  for most applications.  
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For the case of alongshore uniformity, Eq. (4) reduces to Snell’s law which is used to obtain the 

wave direction θ 

 sin constantk θ =  (21) 

The constant value is obtained from the values of θ, h  and Tp specified at the seaward boundary 

x = 0 located outside the surf zone where ω can be approximated by ωp in Eq. (2).  Reflected 

waves are neglected in this model. 

 

The cross-shore and longshore momentum equations (13) and (14) are simplified as 

 

 
2
x

xx bx sx

d Q d
S gh

dx h dx

ηρ ρ τ τ� �
+ = − − +	 


� �
 (22) 

 x y
xy by sy

Q Qd
S

dx h
ρ τ τ� �

+ = − +	 

� �

 (23) 

where Sxx = cross-shore radiation stress; ρ = water density; �bx = cross-shore bottom stress; �sx = 

cross-shore wind stress on the sea surface; Sxy = shear component of the radiation stress; �by = 

longshore bottom stress; and �sy = longshore wind stress on the sea surface.  The wind shear 

stresses may not be negligible especially outside surf zones on natural beaches (Lentz et al. 

1999).  Linear wave theory for progressive waves is used to estimate Sxx and Sxy as in Eqs. (17) 

and (18) 

 

 ( ) ( )2 1
cos ; cos sin

2
xx r xy rS nE M E n S nE Mθ θ θ� �= + + − = +	 


� �
 (24) 

with 
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 2/ ; ;g r rn C C E g M Cqηρ σ ρ= = =  (25) 

where Cg = linear wave group velocity; E = specific wave energy with the root-mean-square 

wave height defined as Hrms = 8 ση; and Mr = momentum flux of a roller propagating with the 

phase velocity C.  It is noted that the equations used in CSHORE are presented again for clarity. 

 

The time-averaged bottom shear stresses in Eqs. (22) and (23) are written as 

 

 ( )0.52 21 1
; ;

2 2
bx b a by b a af UU f VU U U Vτ ρ τ ρ= = = +  (26) 

where U = depth-averaged cross-shore velocity; V = depth-averaged longshore velocity; fb = 

bottom friction factor; and the overbar indicates time averaging.  The bottom friction factor fb is 

of the order of 0.015 but should be calibrated using longshore current data because of the 

sensitivity of longshore currents to fb.  The equivalency of the time and probabilistic averaging is 

assumed to express �bx and �by in terms of the mean and standard deviation of the depth-averaged 

velocities U and V expressed as 

 ( )0.52 2; ; ;T U T V a T a a U VU F V F U F F F Fσ σ σ= = = = +  (27) 

with 

 * * * *cos ; sin ; ;U V

T T

U V
F U r F V r U Vθ θ

σ σ
= + = + = =  (28) 

where U  and V  = depth-averaged cross-shore and longshore currents; σT  = standard deviation 

of the oscillatory (assumed Gaussian) depth-averaged velocity UT with zero mean; and r = 

Gaussian variable defined as r = UT/σT whose probability density function is given by 



 23 

 ( )
21

exp
2 2

r
f r

π
� �

= −	 

� �

 (29) 

Linear progressive wave theory is used locally to express UT in terms of the oscillatory free 

surface elevation ( )η η−  

 ( )T

C
U

h
η η= −  (30) 

which yields the standard deviation σT of the oscillatory velocity UT 

 

 * *; /T C hησ σ σ σ= =  (31) 

It is noted that that * / TU U σ=  and * / TV V σ=  are of the order of unity or less.  The standard 

deviations of U and V are given by 

 cos ; sinU T V Tσ σ θ σ σ θ= =  (32) 

where cos 0θ >  but sinθ  can be negative.  Substitution of Eq. (27) into Eq. (26) yields 

 

 2 21 1
;

2 2
bx b T bx by b T byf G f Gτ ρ σ τ ρ σ= =  (33) 

with 

 ( )( ) ;bx U a by V aG F F f r dr G F F f r dr
∞ ∞

−∞ −∞

= =   (34) 

which must be integrated numerically. 

 

The wind shear stress in Eqs. (22) and (23) are expressed as 
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 2 2
10 10cos ; sinsx a D w sy a D wC W C Wτ ρ θ τ ρ θ= =  (35) 

where ρa = air density (ρa �  1.225 kg/m3); CD = drag coefficient, W10 = 10-m wind speed; and θw 

= wind direction defined in Fig. 1.  The formula by Large and Pond (1981) is used to estimate CD 

where CD = 0.0012 for W10 < 11 m/s and CD = (0.00049 + 0.000065 W10 ) for W10 ≥  11 m/s.  It is 

noted that the measured values of CD during tropical cyclones by Powell et al. (2003) indicated 

no increase of CD with the increase of W10 much above 25 m/s.  In short, available data is 

insufficient to estimate CD for extreme wind conditions. 

 

The wave action equation (5) for the case of alongshore uniformity becomes 

 

 cos B fx
g

D Dd E Q
C

dx h
θ

ω ω

+� �� �
+ = −� �	 


� �� �
 (36) 

which reduces to the wave energy equation if ω is constant and Qx=0. 

 ; cosx
B f x g

dF
D D F EC

dx
θ= − − =  (37) 

where Fx = cross-shore energy flux based on linear progressive wave theory; and DB and Df = 

energy dissipation rates due to wave breaking and bottom friction, respectively.  The energy 

dissipation rate DB due to wave breaking in Eq. (36) is estimated using the formula by Battjes 

and Stive (1985), which was modified by Kobayashi et al. (2005) to account for the local bottom 

slope and to extend the computation to the lower swash zone.  The modified formula is 

expressed as 
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2
2 1

; ;
4

0.88 2
tanh ; 1

0.88 3

B rms
B

m

b
m

gaQH Q H
D

T nQ H

kh S
H a

k kh

ρ

γ π

� �−= = 	 

	 

� �

� �
= = ≥	 


� �

�

 (38) 

 

where a = slope effect parameter; Q = fraction of breaking waves; HB = breaker height used to 

estimate DB; T = intrinsic wave period given by T = 2π/ω with ω obtained using Eq. (2); 

8rmsH ησ=  = local root-mean-square wave height; Hm = local depth-limited wave height; k = 

wave number; h  = mean water depth including wave setup; γ = empirical breaker ratio 

parameter; and Sb = local bottom slope given by Eq. (11).  The parameter a is the ratio between 

the wave length (2π/k) and the horizontal length (3 h /Sb) imposed by the small depth and 

relatively steep slope where the lower limit of a = 1 corresponds to the formula by Battjes and 

Stive (1985) who also assumed HB = Hm.  The fraction Q is zero for no wave breaking and unity 

when all waves break.  The requirement of 0 1Q≤ ≤  implies rms mH H≤  but rmsH  can become 

larger than mH  in very shallow water.  When Hrms > Hm,  use is made of Q = 1 and HB = Hrms.  

In addition, the upper limit of * / hησ σ=  is imposed as * 1σ ≤  in very shallow water (Kobayashi 

et al. 1998).  The breaker ratio parameter γ in Eq. (38) is typically in the range of γ = 0.5 – 1.0 

(Kobayashi et al. 2007a) but should be calibrated to obtain a good agreement with the measured 

cross-shore variation of ση if such data is available.  On the other hand, the energy dissipation 

rate Df due to bottom friction in Eq. (36) is expressed as 

 31

2
f b aD f Uρ=  (39) 
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Substitution of Ua given in Eq. (27) into Eq. (39) yields 

 ( )3 31
;

2
f b T f f aD f G G F f r drρ σ

∞

−∞

= =   (40) 

where f(r) is given by Eq. (29). 

 

The energy equation for the roller given by Eq. (9) reduces to that used by Ruessink et al. (2001) 

for the case of alongshore uniformity 

 

 ( )2 cos ;r B r r r r

d
C q D D D g q

dx
ρ θ ρ β= − =  (41) 

where the roller dissipation rate Dr is assumed to equal the rate of work to maintain the roller on 

the wave-front slope �r of the order of 0.1.  Use is made of the empirical formula given by Eq. 

(10) proposed by Kobayashi et al. (2005) who included the local bottom slope effect.  If the 

roller is neglected, qr = 0 and Eq. (41) yields Dr = DB.  The roller effect improves the agreement 

for the longshore current (Kobayashi et al. 2007a). 

 

Eqs. (19) – (41) are the same as those used by Kobayashi et al. (2007a) who assumed Qx = qo = 

0 in Eq. (19) and neglected the wind shear stresses in Eqs. (22) and (23), and used linear 

shallow-water wave theory with C = (g h )0.5 in Eq. (30).  Substitution of Eqs. (31) and (32) into 

Eq. (19) yields 

 *2 2
1 r x

U

gh Cq Q
U

C g hη

σ σ
σ

� �
	 
= − + +
	 

� �

 (42) 

The landward-marching computation starting from x = 0 outside the surf zone is the same as that 

of Kobayashi et al. (2007a).   
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Approximate analytical equations of Gbx, Gby and Gf given by Eqs. (34) and (40) are obtained by 

Kobayashi (2008b) to reduce the computation time and improve the numerical stability.  The 

function Fa given in Eq. (27) with Eq. (28) is rewritten as 

 ( )
0.52 2

a m mF r r F� �= − +
� �

 (43) 

with 

 ( )* * * *cos sin ; cos sinmr U V F V Um θ θ θ θ= − + = −  (44) 

Eq. (43) is approximated as 

 ( ) for 0a m mF r r F r= − + ≥  

 ( ) for 0a m mF r r F r= − − + <  (45) 

Substituting Eq. (45) into Eqs. (34) and (40) and integrating the resulting equations analytically, 

we obtain approximate expressions for Gbx, Gby and Gf  

 ( )* *

2
cosbx m mG U r U Fθ

π
= − +  (46) 

 ( )* *

2
sinby m mG V r V Fθ

π
= − +  (47) 

 ( ) ( )2 2 2 2 2
* * * *

2 2
2 1 2f m mG U V F U V r

π π
= + + + + + +  (48) 

which depends on sinθ (cosθ > 0 assumed), rm and Fm where Eq. (44) yields *U  = − (rm cos θ + 

Fm sin θ) and *V = (Fm cos θ  −  rm sin θ). 
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For the case of normally incident waves with no wind, sin θ  = 0 and *V  = 0.  Eqs. (46) – (48) 

yield Gbx = 1.6 *U , Gby = 0, and Gf = (1.6 + 2.4 2
*U ).  For this case, Eq. (23) requires �by = 0 for 

Qx = 0 (no wave overtopping) and Eq. (33)  yields Gby = 0.  As a result, Eq. (47) is exact.  For sin 

θ = 0 and *V  = 0, Gbx and Gf given by Eqs. (34) and (40) can be integrated analytically as 

presented by Kobayashi et al. (2007b) who approximated the analytical expressions of Gbx and Gf 

as Gbx = 1.64 *U  and Gf = (1.6 + 2.6 2
*U ).  These approximate equations are very similar to the 

above equations obtained from Eqs. (46) and (48).  For the case of |sin θ |� 1 and | *U |� | *V  |, 

Eq. (47) can be approximated as Gby =  *V  (0.8 + | *V |).  Using field data and probabilistic 

analyses, Feddersen et al. (2000) obtained Gby = *V  (1.162 + 2
*V )0.5.  The difference between 

these two approximate equations for Gby is less than 20% for | *V | < 1.4, which is typically 

satisfied. 

 

Kobayashi et al. (2008b) compared the approximate values of Gbx, Gby and Gf given by Eqs. (46) 

– (48) with the exact values of Gbx, Gby and Gf obtained by the numerical integration of Eqs. (34) 

and (40).  The percentage error was typically about 10% and always less than 35% for the ranges 

of |sin θ | < 1, | rm | < 1 and |Fm |< 1.  This error is probably less than the uncertainty of the 

bottom friction factor fb.  

 

5.  Sediment Transport Model 
 
The combined wave and current model CSHORE predicts the spatial variations of the 

hydrodynamic variables used in the following sediment transport model for given beach profile, 

water level and seaward wave conditions at x = 0.  The bottom sediment is assumed to be 
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uniform and characterized by d50 = median diameter; wf = sediment fall velocity; and s = 

sediment specific gravity.  The sediment transport model developed for CSHORE is modified 

slightly for the horizontally two-dimensional model C2SHORE. 

 

First, the spatial variation of the degree of sediment movement is estimated using the critical 

Shields parameter ψc (Madsen and Grant 1976) which is taken as ψc = 0.05.  The instantaneous 

bottom shear stress �′b is assumed to be given by �′b = 0.5 ρ fb U2
a with Ua given in Eq. (26).  The 

sediment movement is assumed to occur when �′b exceeds the critical shear stress, ρg(s−1)d50 ψc.  

The probability Pb of sediment movement can be shown to be the same as the probability of 

( ) ( )2 2 2 2
m b b mr r F R F− > = −  where Rb = [2 g (s−1) d50 ψc fb-1]0.5/σT and rm and Fm are defined in 

Eq. (44).  For the Gaussian variable r given by Eq. (29), Pb is given by  

 

 21 1
for 0

2 2 2 2
b m b m

b b

F r F r
P erfc erfc F

� � � �− += + >	 
 	 

� � � �

 (49) 

and Pb = 1 for 2
sF  ≤  0 where erfc is the complementary error function.  The value of Pb 

computed from x = 0 located outside the surf zone increases landward and fluctuates in the surf 

and swash zones, depending on the presence of a bar or a terrace that increases the local fluid 

velocity. 

 

Second, the spatial variation of the degree of sediment suspension is estimated using the 

experimental finding of Kobayashi et al. (2005) who showed that the turbulent velocities 

measured in the vicinity of the bottom were related to the energy dissipation rate due to bottom 

friction.  Representing the magnitude of the instantaneous turbulent velocity by (D′f /ρ)1/3 with 



 30 

D′f = 0.5 ρfb 3
aU  in light of Eq. (39), the probability Ps of sediment suspension is assumed to be 

the same as the probability of (D′f /ρ)1/3 exceeding the sediment fall velocity wf.  The probability 

Ps is then equal to the probability of ( )2 2 2
s s mF R F= −  with Rs =[(2/fb)1/3wf /σT ] and is given by 

 

 21 1
for 0

2 2 2 2
s m s m

s s

F r F r
P erfc erfc F

� � � �− += + >	 
 	 

� � � �

 (50) 

and Ps = 1 for 2
sF  ≤  0.  If Ps > Pb, use is made of Ps=Pb assuming that sediment suspension 

occurs only when sediment movement occurs.  Fine sands on beaches tend to be suspended once 

their movement is initiated. 

 

Third, the suspended sediment volume Vs per unit horizontal bottom area is estimated by 

modifying the sediment suspension model by Kobayashi and  Johnson (2001) 

 
( )

( ) ( )0.5 0.52 21 1 ; ;
1

B r f f b b
s s bx by bx by

f

e D e D z z
V P S S S S

g s w x yρ

+ ∂ ∂= + + = =
− ∂ ∂

 (51) 

where Sbx = cross-shore bottom slope; Sby = longshore bottom slope; and eB and ef = suspension 

efficiencies for the energy dissipation rates Dr and Df due to wave breaking and bottom friction, 

respectively.  Use is made of eB = 0.005 and ef = 0.01 as typical values in the computation of 

berm and dune erosion but the value of eB is uncertain and should be calibrated if Vs is measured 

(Kobayashi et al. 2007a).  The sediment suspension probability Ps is added to Eq. (51) to ensure 

Vs = 0 if Ps = 0.  The term involving Sbx and Sby is the actual bottom area per unit horizontal 

bottom area and essentially unity except for very steep slopes.  For the case of alongshore 

uniformity, Sby = 0.  The cross-shore and longshore suspended sediment transport rates qsx and qsy 

are expressed as 
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 ( )0.5; ; / tansx x s sy s x bxq a UV q VV a a S aφ� �= = = + ≥
� �

 (52) 

where a = empirical suspended load parameter and φ = angle of internal friction of the sediment 

with tanφ = 0.63 for sand (Bailard 1981).  The parameter a accounts for the onshore suspended 

sediment transport due to the positive correlation between the time-varying cross-shore velocity 

and suspended sediment concentration.  The value of a increases to unity as the positive 

correlation decreases to zero.  For the three small-scale equilibrium profile tests conducted by 

Kobayashi et al. (2005), a was of the order of 0.2.  The effect of the cross-shore bottom slope on 

ax was included by Kobayashi et al. (2008c) to increase berm and dune erosion.  For Sbx ≤ 0, ax = 

a.  The cross-shore suspended sediment transport rate qsx is negative (offshore) because the 

return (undertow) current U  is negative (offshore).  On the other hand, the longshore suspended 

sediment transport rate qsy in Eq. (52) neglects the correlation between the time-varying 

longshore velocity and suspended sediment concentration, which appears to be very small if the 

longshore current V  is sufficiently large. 

 

Fourth, the formulas for the cross-shore and longshore bedload transport rates bxq  and byq  are 

devised somewhat intuitively because bedload in the surf zone has never been measured.  The 

time-averaged rates bxq  and byq  are tentatively expressed as 

 ( ) ( )2 2 2 2;bx byq B U V U q B U V V= + = +  (53) 

where B = empirical parameter.  Eq. (53) may be regarded as a quasi-steady application of the 

formula of Meyer-Peter and Mueller (e.g., Ribberink 1998).  Substitution of U and V given in 

Eq. (27) with Eqs. (28) and (29) into Eq. (53) yields 
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 ( )3 2
* * * 2 sinbx T mq B b U V Fσ θ= + +  (54) 

 ( )3 2 2
* * *1 2 sinby T mq B V U V rσ θ� �= + + −� � (55) 

where ( )3
* * *3b U U= +  and Fm and rm are defined in Eq. (44). 

 

Eqs. (54) and (55) yield 3
*bx Tq b Bσ=  and byq  = 0 for normally incident waves with sinθ = 0 and 

*V  = 0.  The expressions of B and *b  are obtained by requiring that 3
*bx Tq b Bσ=  reduces to the 

onshore bedload formula proposed by Kobayashi et al. (2008a) for normally incident waves, 

which synthesized existing data and simple formulas.  The proposed formulas are written as 

 
( )

( ) ( )3 2
* *1 2 sin

1
b

bx T m s bx

bP
q U V F G S

g s
σ θ= + +

−
 (56) 

 
( )

( ) ( )3 2 2
* * *1 2 sin

1
b

by T m s by

bP
q V U V r G S

g s
σ θ� �= + + −� �−

 (57) 

where b = empirical bedload parameter; and Gs = bottom slope function.  The sediment 

movement probability Pb given in Eq. (49) accounts for the initiation of sediment movement.  It 

is noted that *b  = 1 in Eq. (56) to compensate for the limitations of Eq. (53) and the Gaussian 

distribution of the horizontal velocity used in Eqs. (28) and (29) as discussed by Kobayashi et al. 

(2008a).  They calibrated b = 0.002 using the 20 water tunnel tests of Ribberink and Al-Salem 

(1994), the 4 large-scale wave flume tests of Dohmen-Janssen and Hanes (2002), and the 24 

sheet flow tests by Dohmen-Janssen et al. (2002).  Furthermore, this simple bedload formula is 

consistent with the sheet flow model for onshore bar migration by Trowbridge and Young (1989) 

and the energetics-based bedload formula for steady flow by Bagnolds (1966) if the steady flow 

formula is applied in the time-averaged manner.  The onshore bedload transport predicted by Eq. 
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(56) is consistent with the field observations of onshore ripple migration by Becker et al. (2007) 

and Masselink et al. (2007).  The offshore suspended sediment transport predicted by Eq. (52) is 

consistent with the field measurement during a storm by Madsen et al. (1994).  The condition of 

( ) 0bx sxq q+ =  for an equilibrium profile along with additional assumptions can be shown to 

yield the equilibrium profile popularized by Dean (1991). 

 

The bottom slope function Gs(Sbx) was introduced by Kobayashi et al. (2008a) to account for the 

effect of the steep cross-shore slope Sbx on the bedload transport rate and is expressed as 

 ( ) ( )tan / tan for tan 0s bx bx bxG S S Sφ φ φ= + − < <  (58) 

 ( ) ( ) ( )tan 2 / tan for 0<S tans bx bx bx bxG S S Sφ φ φ= − − <  (59) 

where Gs = 1 for Sbx = 0.  Eq. (58) corresponds to the functional form of Gs used by Bagnold 

(1966) for steady stream flow on a downward slope with Sbx < 0 where the downward slope 

increases qbx.  Eq. (59) ensures that Gs approaches negative infinity as the upward slope Sbx 

approaches tan φ.  Eqs. (58) and (59) reduce to Gs = (1 − Sbx / tan φ) for |Sbx | �  tan φ.  Eq. (56) 

with Gs given by Eqs. (58) and (59) implies that the bedload transport rate bxq  is positive 

(onshore) for Sbx < (tan φ)/2 and negative (offshore) for Sbx > (tan φ) /2.  Use is made of |Gs |<Gm 

= 10 to avoid an infinite value in the computation.  The computed profile change is not very 

sensitive to the assumed value of Gm because the beach profile changes in such a way to reduce a 

very step slope except in the region of scarping (e.g., Seymour et al. 2005).  The effect of the 

longshore bottom slope Sby is included in Eq. (57) using the same bottom slope function Gs(Sby) 

but has never been validated for lack of suitable data. 
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The landward marching computation of the present time-averaged model ends at the cross-shore 

location x = xm where the mean water depth h  is less than 1 cm.  No reliable data exists for 

suspended sand and bedload transport rates in the zone which is wet and dry intermittently.  

Consequently, the following simple procedure was proposed by Kobayashi et al. (2008a) to deal 

with the zone with the bottom slope Sbx >  tan φ.  The cross-shore total sediment transport rate qx 

= (qsx + qbx) at x = xm is denoted by qxm.  If qxm is negative (offshore), qx is extrapolated linearly 

to estimate qx on the scarped face with Sbx > tan φ 

 ( ) ( )/ forx xm e e m m eq q x x x x x x x= − − < <  (60) 

where xe = landward limit of the scarping zone with Sbx > tan φ.  The extrapolated qx is in the 

range of qxm  ≤  qx ≤  0  and the scarping zone is eroded due to the offshore sediment transport.  

This simple procedure is effective for a high and wide dune, that is typical in the Netherlands 

(e.g., van Gent et al. 2006), but does not allow onshore sediment transport due to overwash.  As a 

result, no wave overtopping has been allowed so far and qo = 0 in Eq. (19). 

 

Finally, the beach profile change is computed using the continuity equation of bottom sediment 

 ( )1 0yb x
p

qz q
n

t x y

∂∂ ∂− + + =
∂ ∂ ∂

 (61) 

where np = porosity of the bottom sediment which is normally taken as np = 0.4; t = slow 

morphological time for the change of the bottom elevation zb; and qy = (qsy + qby) = longshore 

total sediment transport rate.  For the case of alongshore uniformity, the third term in Eq. (61) is 

zero.  Eq. (61) is solved using an explicit Lax-Wendroff numerical scheme (e.g., Nairn and 

Southgate 1993) to obtain the bottom elevation at the next time level.  This computation 
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procedure is repeated starting from the initial bottom profile until the end of a profile evolution 

test.  The computation time is of the order of 10-3 of the test duration. 

 

6.  Permeable Layer Model 
 
The combined wave and current model CSHORE is extended to allow the presence of a 

permeable layer in the computation domain. Fig. 2 shows an example of irregular wave 

overtopping of a permeable slope where x = onshore coordinate: z = vertical coordinate, η  = 

mean free surface elevation above SWL; S = storm tide above z = 0; zb = bottom elevation; h  = 

mean water depth; U = instantaneous depth-averaged cross-shore velocity above the bottom; zp = 

elevation of the lower boundary of the permeable layer; hp = (zb − zp) = vertical thickness of the 

permeable layer; and Up = instantaneous cross-shore discharge velocity inside the permeable 

layer.  The cross-shore profiles of zb(x) and zp(x) are specified as input where hp = 0 in the zone 

of no permeable layer.  The lower boundary located at z = zp is assumed to be impermeable for 

simplicity.  It is noted that the profile change of the permeable slope such as a gravel beach has 

not been predicted so far. 
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Fig. 2.  Definition sketch of permeable layer model. 

 

The time-dependent model for the flow over a permeable layer in shallow water developed by 

Kobayashi and Wurjanto (1990) and Wurjanto and Kobayashi (1993) is time-averaged and 

simplified to account for the permeable layer in the cross-shore model CSHORE.  The vertically-

integrated continuity equation (19) is modified as 

 
2

cos cos ;x r x p p o

g
Q hU q Q h U q

C
ησ

θ θ= + + + =  (62) 

where pU  = time-averaged cross-shore discharge velocity; ( )p ph U  = water flux inside the 

permeable layer with its vertical thickness ph ; and oq  = combined wave overtopping rate above 

and through the permeable layer.  The cross-shore and longshore momentum equations (22) and 

(23) are assumed to remain the same, neglecting the momentum fluxes into and out of the 

permeable layer where the bottom friction factor bf  for bxτ  and byτ  given by Eq. (33) includes 

the effect of the surface roughness of the permeable layer and was calibrated in the range of bf  = 
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0.01 – 0.05 (Kobayashi et al. 2007b).  For the case of alongshore uniformity and negligible 

momentum fluxes into and out of the permeable layer, the time-averaged longshore discharge 

velocity pV  is assumed to be zero because of no or negligible driving force to cause the 

longshore discharge inside the permeable layer.  It is noted that the assumption of 0pV =  cannot 

be validated at present for lack of suitable data. 

 

On the other hand, the wave action equation (36) is modified as 

 cos B f px
g

D D Dd E Q
C

dx h
θ

ω ω

+ +� �� �
+ = −� �	 


� �� �
 (63) 

where pD  = energy dissipation rate due to flow resistance in the permeable layer, assuming that 

the energy influx into the permeable layer equals the dissipation rate pD  per unit horizontal area.  

The dissipation rate pD  is expressed as (Wurjanto and Kobayashi 1993) 

 ( ) ( )1.5
2 2 2 2

p p p p p p p pD h U V U Vρ α β� �= + + +� �� �
 (64) 

where pα  and pβ  = laminar and turbulent flow resistance coefficients, respectively, and pV  = 

instantaneous longshore discharge velocity.  Kobayashi et al. (2007b) modified the formulas for 

pα  and pβ  proposed by van Gent (1995) as follows: 

 
( )2

2
0 12 2

50

1
;p

p p

p n p

n

n D

ν βα α β β
σ

−
= = +  (65) 

with 

 
( ) ( )0 0

1 23 2
50

1 7.5 1
;

2

p p

p n p

n n

n D n T

β β
β β

− −
= =  (66) 
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where 0α  and 0β  = empirical parameters calibrated as 0α  = 1,000 and 0β  = 5; pn  = porosity of 

the permeable layer consisting of stone; ν  = kinematic viscosity of the fluid; 50nD  = nominal 

stone diameter defined as ( )1/3
50 50 /n sD M ρ=  with 50M  = median stone mass and sρ  = stone 

density; pσ  = standard deviation of the instantaneous discharge velocity; and T  = intrinsic wave 

period used in Eq. (38). 

 

The discharge velocities pU  and pV  in Eq. (64) are assumed to be expressed as 

 cos ; sinp p p p pU U r V rσ θ σ θ= + =  (67) 

where r  = Gaussian variable whose probability density function is given by Eq. (29); and θ  = 

incident wave angle for the oscillatory velocity direction above and inside the permeable layer.  

The assumptions of the Gaussian velocity distribution and 0pV =  allow one to represent the 

discharge velocities by the mean cross-shore discharge velocity pU  and the standard deviation 

pσ .  Substitution of Eq. (67) into Eq. (64) yields 

 ( ) ( ) ( )22 2 2 2
2 1

2
2 1 2cosp p p p p p p pD h U Uρ α σ β β σ σ θ

π

� �� �� �= + + + + +� �� �� �� �� �
 (68) 

where use is made of the approximate expression of fG  given by Eq. (48) and the assumption of 

sinp pU θ σ�  to simplify Eq. (68).  Approximate equations for pU  and pσ  are derived in the 

following. 
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Neglecting the inertia terms in the cross-shore momentum equation for the flow inside the 

permeable layer (Kobayashi and Wurjanto 1990), the local force balance between the cross-shore 

hydrostatic pressure gradient and flow resistance is assumed 

 ( )0.52 2 0p p p p p pg U U U V
x

η α β∂ + + + =
∂

 (69) 

Eq. (69) is averaged probabilistically using Eq. (67).  For the case of alongshore uniformity, the 

averaged force balance equation is expressed as 

 ( )( )2
2 1

2
1 cos 0p p p

d
g U

dx

η α β β σ θ
π

� �
+ + + + =� �

� �
 (70) 

where use is made of the approximate expression of bxG  given by Eq. (46) and the assumption of 

sinp pU θ σ�  to simplify Eq. (70).  It is noted that the local force balance between the 

longshore hydrostatic pressure gradient and flow resistance yields 0pV =  for the case of 

alongshore uniformity where η  is independent of the longshore coordinate y .  To derive an 

equation pσ , the approximate analytical method used by Kobayashi et al. (2007b) is adopted.  

Eq. (69) is linearized as 

 ( )1.9 0p p p pg U
x

η α β σ∂ + + =
∂

 (71) 

which is used to obtain 

 ( )2 1 * *1.9 ; /p p p gkh hηα β β σ σ σ σ σ� �+ + = =� �  (72) 

where the wave number k  is computed using Eq. (2).  Eq. (72) can be solved analytically to 

obtain pσ  for known *khσ .  After pσ  is obtained, Eq. (70) is used to calculate pU  for known 
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/d dxη .  The energy dissipation rate pD  is computed using Eq. (68).  Eq. (62) for assumed oq  is 

used to obtain xQ  and U  where U  is expressed by Eq. (42). 

 

7.  Irregular Wave Runup and Overtopping 

The time-averaged model CSHORE does not predict the shoreline oscillations on beaches and 

coastal structures unlike time-dependent models (e.g., Wurjanto and Kobayashi 1993).  To 

compensate this shortcoming of CSHORE, Kobayashi et al. (2008d) proposed a probabilistic 

model for irregular wave runup as illustrated in Fig. 3.  The shoreline oscillation is assumed to be 

measured by a runup wire (RW) placed parallel to the bottom elevation zb at a vertical height of 

δr.  The runup wire measures the instantaneous elevation ηr above SWL of the intersection 

between the wire and the free surface elevation.  The mean rη  and standard deviation σr of ηr 

are estimated using the computed cross-shore variations of ( )xη  and ( )xησ  of the free surface 

elevation η above SWL.  The probabilities of ηr exceeding ( )r rη σ+ , rη , and ( )r rη σ−  are 

assumed to be the same as the probabilities of η exceeding ( )ηη σ+ , η , and ( )ηη σ− , 

respectively.  The elevations of Z1, Z2, and Z3 of the intersections of ( )ηη σ+ , η , and ( )ηη σ−  

with the runup wire are obtained for the given wire elevation (zb + δr).  The obtained elevations 

are assumed to correspond to 1 r rZ η σ� �= +� �, 2 rZ η= , and ( )3 r rZ η σ= − .  The mean and 

standard deviation of rη  are estimated as 

 ( ) ( )1 2 3 1 3/ 3 ; / 2r rZ Z Z Z Zη σ= + + = −  (73) 
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Fig. 3.  Definition sketch for probabilistic model for irregular wave runup. 
 

The runup height R is defined as the crest height above SWL of the temporal variation of ηr.  

The probability distribution of linear wave crests above the mean water level (MWL) is normally 

given by the Rayleigh distribution.  For the case of no wave overtopping, the runup height 

( )rR η−  above the mean elevation rη  is assumed to be given by the Rayleigh distribution 

(Kobayashi et al. 2008d) 

 ( )
1/3

exp 2 r

r

R
P R

R

η
η

� �� �−
� �= − 	 


	 
� �−� �� �

 (74) 

where P(R) = exceedance probability of the runup height R above SWL; and R1/3 = significant 

runup height defined as the average of 1/3 highest values of R.  The mean rη  related to wave 

setup is normally neglected in Eq. (74) for the prediction of irregular wave runup on steep 

coastal structures.  For the 1/5 and 1/2 permeable slope experiments conducted by Kobayashi et 

al. (2008d), R1/3 was estimated as 

 ( )1/3 2 tanr rR η θ σ= + +  (75) 
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where θ = seaward slope angle from the horizontal and tan 1/ 5θ =  and 1/2 in the experiments.  

It is cautioned that Eqs. (74) and (75) have been calibrated only for permeable slopes with tanθ  

= 0.2 – 0.5 in the absence of wave overtopping. 

 

Wave overtopping occurs when the individual runup height R above SWL exceeds the structure 

crest height Rc above SWL as depicted in Fig. 3.  Wave overtopping reduces R exceeding Rc 

because of overtopping flow on the crest.  Kobayashi and de los Santos (2007) adopted the 

following Weibull distribution: 

 ( )
1/3

exp 2 r

r

R
P R

R

κ
η
η

� �� �−� �= − 	 

	 
� �−� �� �

 (76) 

with 

 ( ) ( )3
* * 1/32 0.5 ; /r rcR R R Rκ η η−= + = − −  (77) 

where κ  = shape parameter with κ  = 2 for the Rayleigh distribution given by Eq. (74); and *R  

= normalized crest height related to the wave overtopping probability Po.  The probability Po of 

R exceeding Rc in Eq. (76) is given by 

 ( )*exp 2oP Rκ= −  (78) 

It should be noted that the empirical formula for κ  given by Eq. (77) has been calibrated using 

only 22 permeable slope tests so far.  The formula for R1/3 given by Eq. (75) has been found to be 

applicable to these 22 tests.  The runup height R2% for the 2% exceedance probability obtained 

using Eq. (76) is given by 

 ( ) ( )2/
2% 1/31.40r rR R

κη η= + −  (79) 
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where the shape parameter κ  given by Eq. (77) accounts for the decrease of R2% due to the 

decrease of the normalized crest height *R  and the resulting increase of the wave overtopping 

probability Po given by Eq. (78). 

 

The wave overtopping rate qo in Eq. (19) for an impermeable slope and in Eq. (62) for a 

permeable slope needs to be estimated if wave overtopping occurs at the landward end of the 

computation domain located at x = xe in Fig. 2.  For permeable slopes, Kobayashi and de los 

Santos (2007) proposed the following empirical formula: 

 ( ) *

*
b

o o SWL sq a P q q= +  (80) 

with 

 
2

cos atSWL SWL

g
q x x

C
ησ

θ= =  (81) 

where *a  and *b  = empirical parameters; Po = wave overtopping probability; SWLq  = wave-

induced onshore flux in Eq. (62) evaluated at the still water shoreline located at SWLx x=  with 

( )b SWLz x S=  in Fig. 2; and sq  = seepage rate through the permeable layer at ex x= .  It is noted 

that the roller effect has been neglected for permeable slopes because of its negligible effect and 

0rq =  in Eq. (62).  The empirical parameters *a  and *b  are assumed to depend on the horizontal 

width hL  of the permeable surface above the upper limit of wave setup located at ( ),r rx z  in Fig. 

3 where the infiltration of overtopped water is assumed to be vertical due to gravity.  The 

empirical formulas based on 32 tests were expressed as 

 ( )* * * * * 50exp 0.1 ; 1 0.1 ; /h na L b L L L D= − = + =  (82) 
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where *L  = infiltration width normalized by the nominal stone diameter 50nD , crudely 

representing the horizontal number of stones above the maximum wave setup. 

 

On the other hand, Kobayashi and de los Santos (2007) estimated the seepage rate sq  for 

normally incident waves 

 ( )
( )

0.5

1.5

1

0.2 fors r e r e

e r

g
q z z z z

x x β

� �
� �= − >
� �−� �

 (83) 

where ez  = elevation of the landward end of the impermeable surface pz  as shown in Fig. 2; and 

1β  = turbulent flow resistance coefficient defined in Eq. (66).  To derive Eq. (83), the seepage 

flow was assumed to be driven by the horizontal pressure gradient from the point ( ),r rx z  to the 

point ( ),e ex z .  Consequently, 0sq =  if r ez z< .  If r ex x= , the permeable layer is wet always 

and ps pq h U=  at ex x=  where the water flux pph U  in the permeable layer is included in the 

continuity equation (62). 

 

Kobayashi et al. (2007c) examined the transition from little wave overtopping to excessive wave 

overtopping and overflow on an impermeable smooth levee with a seaward slope of 1/5 in wave-

flume experiments consisting of 107 tests.  For the impermeable slope, Eqs. (75) and (77) for the 

permeable slope had to be modified as  

 1/3 4 ; 2r rR η σ κ= + =  (84) 

The wave overtopping probability oP  is given by Eq. (78) with 2κ =  where the normalized crest 

height *R  above SWL is defined in Eq. (77) with 1/3R  given by Eq. (84).  It is noted 1oP =  if 
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* 0R < .  For the impermeable slope, the seepage rate 0sq =  in Eq. (80) and Eq. (82) yields 

* 1a =  and * 1b =  for 0hL = .  As a result, the wave overtopping rate oq  is given by o o SWLq P q= .  

For the case of combined wave overtopping and overflow, Kobayashi et al. (2007c) expressed 

the combined rate oq  as 

 for 0o o SWL SWL SWL SWLq P q H gH H= + >  (85) 

with 

 atSWL c SWLH R x xη= − =  (86) 

where SWLH  = head for the overflow; η  = mean water level above SWL; and cR  = levee crest 

height above SWL.  If 0cR < , the levee crest is below SWL and SWLx  is chosen at the seaward 

edge of the levee crest.  For 0SWLH > , SWLH  is the mean water level above the levee crest and 

SWLgH  may be regarded as the water velocity on the crest. 

 

In summary, Eqs. (73) – (86) are essentially empirical and used in the cross-shore model 

CSHORE to predict irregular wave runup, overtopping, seepage and overflow on permeable and 

impermeable structures.  These equations have not been verified for irregular wave overtopping 

and overflow of dunes.  These equations do not predict the spatial variations of the 

hydrodynamic variables required for the sediment model and the computation of dune profile 

evolution.  Consequently, a hydrodynamic model for the intermittently wet zone landward of the 

maximum wave setup is developed in the following. 
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8.  Probabilistic Model for Intermittently Wet Zone 

Time-dependent numerical models such as the nonlinear shallow-water wave model by 

Kobayashi et al. (1989) can predict the water depth and horizontal velocity in the intermittently 

wet and dry (swash) zone on beaches and inclined structures.  However, the time-dependent 

hydrodynamic computation requires considerable computation time and may not lead to an 

accurate prediction of dune profile evolution in view of the earlier attempt by Tega and 

Kobayashi (1996).  A time-averaged probabilistic model is developed here to predict the cross-

shore variations of the wet probability and the mean and standard deviation of the water depth 

and cross-shore velocity in the swash.  The developed model is very efficient computationally 

and can be calibrated using a large number of data sets.  The present model is limited to normally 

incident waves and alongshore uniformity.  A sediment transport model in the swash zone is 

formulated by modifying the sediment transport model in the wet zone. 

 

8.1  Water depth and velocity 

For normally incident waves on impermeable beaches and inclined structures of alongshore 

uniformity, the time-averaged cross-shore continuity and momentum equations derived from the 

nonlinear shallow-water wave equations are expressed as 

 ohU q=  (87) 

 2 2 1
;

2 2
b

bx b bx

d g dz
hU h gS h f U U S

dx dx

� �+ = − − =	 

� �

 (88) 

where h  and U  = instantaneous water depth and cross-shore velocity, respectively; oq  = 

combined wave overtopping and overflow rate; g  = gravitational acceleration; bxS  = cross-shore 

bottom slope; and bf  = bottom friction factor which is allowed to vary spatially.  The wave 
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energy equation corresponding to Eqs. (87) and (88) was given by Kobayashi and Wurjanto 

(1992) who used it to estimate the rate of wave energy dissipation due to wave breaking which is 

neglected in the wet and dry zone. 

 

The instantaneous water depth h  depends on the cross-shore coordinate x  and the swash 

hydrodynamic time t .  The water depth h  at given x  is described probabilistically rather than in 

the time domain.  Kobayashi et al. (1998) analyzed the probability distributions of the free 

surface elevations measured in the shoaling, surf and swash zones.  The measured probability 

distributions were shown to be in agreement with the exponential gamma distribution which 

reduces to the Gaussian distribution and the exponential distribution when the skewness 

approaches zero offshore and two in the swash zone, respectively.  The assumption for the 

Gaussian distribution assumed in Eq. (29) has simplified the cross-shore model CSHORE in the 

wet zone significantly.  The assumption of the exponential distribution is made here to simplify 

the cross-shore model in the wet and dry zone.  The probability density function ( )f h  is 

expressed as 

 ( )
2

exp for 0w
w

P h
f h P h

h h

� �
= − >	 


� �
 (89) 

with 

 ( ) ( )
0 0

;wP f h dh h h f h dh
∞ ∞

= =   (90) 

where wP  = wet probability for the water depth 0h > ; and h  = mean water depth for the wet 

duration.  The dry probability of 0h =  is equal to ( )1 wP− .  The mean water depth for the entire 

duration is equal to wP h .  The overbar in Eqs. (87) and (88) indicates averaging for the wet 
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duration only.  The free surface elevation ( )η η−  above MWL is equal to ( )h h− .  The standard 

deviations of η  and h  are the same and given by 

 

0.5

2
2 w

w

P
h P

ησ � �
= − +	 

	 

� �

 (91) 

which yields hησ =  for 1wP = .  This equality was supported by the depth measurements in the 

lower swash zone by Kobayashi et al. (1998), but the scatter was large due to the difficulty in 

measuring the very small depth accurately. 

 

The cross-shore velocity U  depends on x  and t  and is related to the depth h   in the swash 

zone.  The following relationship between U  and h  may be assumed to express U  as a function 

of h  

 sU gh Uα= +  (92) 

where α  = positive constant; and sU  = steady velocity which is allowed to vary with x .  The 

steady velocity sU  is intended to account for offshore return flow on the seaward slope and the 

downward velocity increase on the landward slope.  Holland et al. (1991) measured the bore 

speed and flow depth on a barrier island using video techniques and obtained 2α �  where the 

celerity and fluid velocity of the bore are assumed to be approximately the same.  Tega and 

Kobayashi (1996) computed wave overtopping of dunes using the nonlinear shallow-water wave 

equations and showed 2α �  for the computed U  and h .  As a result, use may be made of 

2α =  as a first approximation.  Eq. (92) implies that the cross-shore velocity U  increases 

monotonically with the increase of h  at given x .  Eq. (92) yields sU U=  when 0h = , which 
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may be acceptable in view of the very small depth in the wet and dry zone.  Using Eqs. (89) and 

(92), the mean U  and standard deviation Uσ  of the cross-shore velocity U  can be expressed as 

 ( )0.5

2
w w sU P gh P U

π α= +  (93) 

 ( )( ) ( )2
2 2 2U s w s w sgh U U U P U P U Uσ α= − − − + −  (94) 

 

Eq. (92) is substituted into Eqs. (87) and (88) which are averaged for the wet duration using Eq. 

(89).  The continuity equation (87) yields 

 

0.5
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h U h q
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+ =	 
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 (95) 

After lengthy algebra, the cross-shore momentum equation (88) is expressed as 

 ( )
2 2

2

2
o b

bx b s

w

d gh q f
B gS h ghG r

dx P h
α

� �
	 
+ = − −
	 

� �

 (96) 

with 

 29 3
2 1 ;

16 4
s

s

o s

U h
B r

q U h

π πα� �
= − + =	 


−� �
 (97) 

The function ( )b sG r  in Eq. (96)  with sr r=  for simplicity is given by 

 2( ) 1 for 0bG r r r rπ= + + ≥  (98) 

 ( ) ( ) [ ]2 22exp 1 2 ( ) 1 for 0bG r r r r erf r rπ= − − − + + <  (99) 
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where erf  is the error function.  The function bG  increases monotonically with the increase of r  

and 0bG =  and 1 for r = −  0.94 and 0.0, respectively, as shown in Fig. 4.  For 1.5r < − , 

( )21bG r rπ− + +� . 

 

Fig. 4.  Function Gb(r) for wet and dry zone. 

 

Eqs. (95) and (96) are used to predict the cross-shore variation of h  and sU  for assumed oq  

where ,Uησ  and Uσ  are computed using Eqs. (91), (93) and (94), respectively.  It is necessary 

to estimate the wet probability wP  empirically.  To simplify the integration of the momentum 

equation (96), the following formula is adopted: 
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 ( )
13

2
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1

1 ; for
n

o
w c

h h q
P A A A x x

h h Bgh

−
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� �= + − = ≤	 
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 (100) 

where 1h  = mean water depth at the location of 1wP = ; n  = empirical parameter for wP ; A  = 

parameter related to the wave overtopping and overflow rate oq  normalized by the depth 1h  

where water is present always.  The transition from the wet ( 1wP =  always) zone to the wet and 

dry ( 1wP < ) zone may be taken at SWLx x=  where SWLx  is the cross-shore location of the still 

water shoreline of an emerged slope (see Fig. 5) or the seaward edge of a submerged crest as 

discussed in relation to Eqs. (85) and (86).  Eq. (100) is assumed to be valid on the seaward slope 

and crest in the region of cx x≤  where cx  = landward end of the horizontal crest in Fig. 5. 
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Fig. 5.  Transition from wet model ( )rx x<  to wet and dry model ( )SWLx x>  for emerged 

structure ( )0cR > . 
 

Integration of Eq. (96) for wP  given by Eq. (100) with 1h h=  at 1x x=  yields ( )h x  for 

1 cx x x≤ ≤  

 ( ) ( ) ( )
1

1 2
1

1 11 1
2

n x

n b b b b
x

h
B A h z x z x f G dx

h

α
−� �� �

� �+ − = − +	 

� �� �� �

  (101) 

where ( ) ( )2 / 1nB B n n= − − ; and ( )bz x  = bottom elevation at the cross-shore location x .  The 

mean water depth h  at given x  is computed by solving Eq. (101) iteratively where the bottom 
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friction factor bf  is allowed to vary with x  and the function bG  given by Eqs. (98) and (99) 

depends on sr  defined in Eq. (97).  The empirical parameter n  is taken to be in the range of 

1 2n< <  so that 0nB > .  The formula for n  calibrated using the 107 tests of wave overtopping 

and overflow on a dike by Farhadzadeh et al. (2007) is expressed as ( ) 0.3
1.01 0.98 tanhn A= + � �� �  

where 1.01 n≤ ≤  1.99. 

 

The wave overtopping and overflow rate oq  is predicted by imposing 0sU =  in Eq. (95) at the 

location of cx  
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gh
q h x x

P

πα � �
= =	 


	 

� �

 (102) 

where ch  and cP  are the computed mean depth h  and wet probability wP  at cx .  The wave 

overtopping probability oP  may be related to the wet probability cP  at cx x= where both  oP  and 

cP  are in the range of 0.0 – 1.0.  The empirical relation of ( )0.6 0.6 1o c c cP P P P� �= + −� � is fitted for 

the 107 tests by Farhadzadeh et al. (2007). 

 

On the slope landward of the crest, the wet probability wP  is assumed to be constant and equal to 

cP  

 forw c cP P x x= ≥  (103) 

Substituting Eq. (103) into Eq. (96) and integrating the resulting equation from cx  to x , the 

mean depth ( )h x  on the landward slope in the region of cx x>  is expressed as 
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 ( ) ( )
22 29

1 1
64 2 2 c

x
c c

b c b b b
c c x

h h P
z x z x f G dx

h B h B h

πα α� � � �� �
� �− + − = − −� �	 

� � � �� � � �� �

  (104) 

where the bottom elevation ( )bz x  decreases with the landward increase of x  in the region of 

cx x> .  Eq. (104) is solved iteratively to compute h  at given x . 

 

For assumed oq , the landward marching computation of h , ησ , U  and Uσ  is initiated using the 

wet model in section 4 from the seaward boundary 0x =  to the landward limit located at rx x=  

which corresponds to the location where the computed h  or ησ  becomes negative in the region 

of h  less then 1 cm for an emerged crest as shown in Fig. 5.  For a submerged crest, the 

landward limit of rx  is taken as cx .  The landward marching computation is continued using the 

wet and dry model in this section from the location of SWLx x=  where 1h h=  in Eq. (101) to the 

landward end of the computation domain or until the mean depth h  becomes less than 0.001 cm.  

Then, the rate oq  is computed using Eq. (102).  This landward computation starting from 0oq =  

is repeated until the difference between the computed and assumed values of oq  is less than 1%.  

This convergency is normally obtained after several iterations.  The computed values of , ,h Uησ  

and Uσ  by the two different models in the overlapping zone of SWL rx x x< <  (see Fig. 5) are 

averaged to smooth the transition from the wet zone to the wet and dry zone. 

 

8.2  Sediment transport 

The sediment transport model for the wet zone in section 5 is adjusted for the wet and dry zone.  

Normally incident waves and alongshore uniformity are assumed here.  The Gaussian velocity 
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distribution has been assumed in section 5, whereas U   in the wet and dry zone is expressed as 

Eq. (92) along with the exponential distribution of h  given by Eq. (89). 

 

First, the movement of sediment particles is assumed to occur when the instantaneous bottom 

shear stress given by 20.5 bf Uρ  exceeds the critical shear stress ( ) 501 cg s dρ ψ−  as has been 

assumed for Eq. (49).  The probability bP  of sediment movement is then the same as the 

probability of cbU U>  where ( ) 0.51
502 1cb c bU g s d fψ −� �= −� � .  Using Eqs. (89) and (92), bP  can be 

shown to be given by 

 
forb w s cbP P U U= >

 (105) 

 
( )2

2
exp forw cb s

b w s cb

P U U
P P U U

ghα

� �−
= − ≤� �

� �� �
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( ) ( )2 2

2 2
1 exp exp forw cb s w cb s
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P U U P U U
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gh ghα α

� �� � � �+ −� �= − − + − − >� � � �� �
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 (107) 

where the upper limit of bP  is the wet probability wP  because no sediment movement occurs 

during the dry duration. 

 

Second, sediment suspension is assumed to occur when the instantaneous turbulent velocity 

estimated as ( )1/3/ 2bf U  exceeds the sediment fall velocity fw  as has been assumed for Eq. 

(50).  The probability sP  of sediment suspension is then the same as the probability of csU U>  

where ( )1/32 /cs f bU w f= .  The probability sP  is then given by  
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 fors w s csP P U U= >  (108) 

 
( )2

2
exp forw cs s

s w s cs

P U U
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 (110) 

 
which reduces to Eqs. (105) – (107) if csU  is replaced by cbU .  If s bP P> , use is made of s bP P=  

because sediment suspension occurs only when sediment movement occurs. 

 

Third, the suspended sediment volume sV  per unit horizontal bottom area is estimated using Eq. 

(51) with 0byS =  for alongshore uniformity where wave breaking may be neglected in the wet 

and dry zone of very small water depth.  Consequently, sV  is assumed to be given by 

 
( )

( )0.521
1

f f
s s bx

f

e D
V P S

g s wρ
= +

−
 (111) 

where the energy dissipation rate due to bottom friction is given by 30.5f bD f Uρ= .  Using 

Eqs. (89) and (92) for the wet and dry zone, fD  can be shown to be expressed as 

 
( ) ( )

1.5
3

1 3
;

2 4
s

f b d s s

w o s

gh U h
D f G r r

P q U h

α πρ= =
−

 (112) 

where the function ( )d sG r  with sr r=  for simplicity is given by 

 ( ) 2 33 3
3 for r 0

4 2
dG r r r r

π π= + + + ≥  (113) 

 ( ) ( ) ( ) ( ) ( )2 3 3 23
1 2 1 2 3 16 9 exp for 0

4
dG r r erf r r r r r r r

π= + − − − + + − <� �� �  (114) 
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The cross-shore suspended sediment transport rate sxq  is estimated using Eq. (52). 

 ( )0.5; / tansx x s x bxq a U V a a S aφ� �= = + ≥
� �

 (115) 

where U  is given by Eq. (93). 

 

Fourth, the cross-shore bedload transport rate bxq  is estimated using Eq. (56) for the case of 

normally incident waves ( )sin 0θ =  and no longshore current ( )0V =  where T Uσ σ=  for 

sin 0θ =  in Eq. (32).  For this case, bxq  is given by  

 
( )

( )
3

1
b U

bx s bx

b P
q G S

g s

σ=
−

 (116) 

where the bottom slope function ( )s bxG S  is given by Eqs. (58) and (59), and the standard 

deviation Uσ  is given by Eq. (94) for the wet and dry zone. 

 

Finally, the cross-shore sediment transport rates sxq  and bxq  computed for the wet zone and the 

wet and dry zone are averaged in the overlapping zone of SWL rx x x< <  for the smooth transition 

between the two zones in the same way as the smooth transition of , ,h Uησ  and Uσ  as explained 

at the end of section 8.1.  The linear extrapolation for the case of no overwash given by Eq. (60) 

for scarping is not applied now that the sediment transport in the wet and dry zone is predicted.  

The continuity equation of bottom sediment given by Eq. (61) with 0yq =  is solved numerically 

to obtain the bottom elevation at the next time level.  It must be emphasized that the sediment 

transport model in this section has not been validated yet. 
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9.  Wave Overtopping and Overflow on Levees 

Coastal levees (dikes) have been designed for no storm surge overflow and limited wave 

overtopping during a design storm.  Efforts have been made to improve our understanding and 

capability in predicting wave runup (van Gent 2001), wave overtopping flow (Schüttrumpf 2001; 

van Gent 2002a; Schüttrumpf and van Gent 2003; Schüttrumpf and Oumeraci 2005), and earthen 

levee breaching (D'Eliso et al. 2006).  A wave overtopping simulator has also been developed to 

investigate the effect of wave overtopping on prototype dikes (van der Meer et al. 2006).  

However, very limited data is available for the transition from limited wave overtopping to 

overflow due to storm surge and waves.  Existing formulas (e.g., EurOtop Manual 2007) for 

wave overtopping are not verified for the cases of excessive wave overtopping and overflow.  

Storm surge and wind waves can exceed the design conditions in view of Hurricane Katrina's 

devastation of the U.S. Gulf Coast.  Time-dependent numerical models are already available to 

predict wave overtopping and overflow for relatively short durations where Neves et al. (2008) 

reviewed a number of existing models.  The aim of this study is to develop a computationally 

efficient model that is suited for the prediction of levee erosion and breaching during an entire 

storm. 

 

The transition from little wave overtopping to combined wave overtopping and overflow on a 

levee is investigated in small-scale laboratory experiments.  A total of 107 tests were conducted 

on an impermeable smooth levee of a 1/5 slope located on a beach of a 1/34.2 slope.  The 

measured overtopping and overflow rates are compared with the formulas in EurOtop Manual 

(2007) which are found to predict the rates of excessive wave overtopping and overflow within a 

factor of about 2.  The numerical model developed by Kobayashi and de los Santos (2007) for 
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wave overtopping is modified to include wave and current interactions.  A time-averaged 

probabilistic model is developed to predict the water depth and velocity in the wet and dry zone 

on the levee.  The numerical model extended to the wet and dry zone is calibrated to predict the 

measured overtopping and overflow rates for the 107 tests within the factor of 2.  The model is 

also compared with the 118 tests conducted by van Gent (2002b) who measured the water depths 

and velocities on the crest and landward (inner) slope of dikes. 

 

9.1  Wave overtopping and overflow experiments 

Experiments were conducted in a wave flume that was 33 m long, 0.6 m wide, and 1.5 m high as 

shown in Fig. 6.  An impermeable smooth beach with a 1/34.2 slope was installed in the flume.  

A 1/14.8 slope of horizontal length 1.29 m was installed between the horizontal flume bottom 

and the 1/34.2 slope but is not shown in Fig. 6 for brevity.  An impermeable levee was 

constructed of plywood.  The seaward slope and crest width of the levee were 1/5 and 30 cm, 

respectively.  A tank was built landward of the levee crest to collect overtopped and overflowed 

water.  The horizontal length and width of the tank were 1.85 m and 0.6 m, respectively. 

10.0m

1/5

Pump

G1

Paddle

1/34.2

0.5m
G2 G3 G4 G5 G6 G7

1.0m 3.5m 3.0m 3.0m

z
x

0

 

Fig. 6.  Experimental setup for wave overtopping and overflow. 
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Seven capacitance wave gauges (G1 to G7) were placed as shown in Fig. 6.  Wave gauges G1 – 

G3  were used to separate the incident and reflected waves and estimate the average reflection 

coefficient R outside the surf zone (Kobayashi et al. 1990).  Wave gauges G4 – G6 measured the 

wave transformation on the 1/34.2 slope.  Wave gauge G7 measured the water level and 

corresponding water volume in the tank.  A pump-pipe system was used to circulate water from 

the tank to the zone behind the piston-type perforated wave paddle.  A flow meter in the pipe 

was installed to measure the discharge and corresponding water volume pumped during a 

specified duration.  The flow meter was calibrated by pumping water from the tank at a constant 

rate and measuring the constant rate of decrease of the water level in the tank. 

 

In the following, the cross-shore coordinate x is taken to be positive landward with x=0 at wave 

gauge G1.  The vertical coordinate z is taken to be positive upward with z=0 at the lowest still 

water level (SWL) used in the wave overtopping experiment.  The bottom elevation is denoted 

by zb(x).  For the experimental setup shown in Fig. 6, zb = − 45.6 cm at x=0, zb = − 12.0 cm at the 

toe of the 1/5 slope located at x = 11.0 m, and zb = 16.5 cm on the levee crest located at x = 12.5 

– 12.8 m.  The still water level S above z=0 was varied in the range of S = 0.0 – 16.5 cm for the 

wave overtopping experiment.  The levee crest height Rc above SWL is given by Rc = (16.5 − S) 

cm.  Irregular waves, based on the TMA spectrum, were generated using the wave paddle in a 

burst of 400 s.  The water depth at the wave paddle was (52 + S) cm.  The initial transient of 40 s 

in each burst was removed from the measured time series sampled at a rate of 50 Hz.  The time 

series of the free surface elevation η  above SWL for the remaining 360-s duration were used to 

obtain the mean η  and the standard deviation ησ  for wave gauges G1—G6, as well as the 

spectral peak period Tp, the spectral wave period Tm-1,0 (van Gent 2001), and the average 
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reflection coefficient R at wave gauge G1.  Table 1 lists the ranges of S, Tp, Tm-1,0, ση and R for 

the 78 wave overtopping (WO) tests conducted in the experiment.  The root-mean-square (RMS) 

wave height Hrms and the significant wave height Hmo are defined as Hrms  = 8 ησ  and 

4moH ησ= .  The difference between Tp  and Tm-1,0 was small at wave gauge G1 located outside 

the surf zone. 

 

For the overflow experiment, the water level was raised above the levee crest.  The overflowed 

water was pumped.   The pumping of about 800 s was required to establish the steady flow in the 

wave flume.  The still water level S is taken as the water level at wave gauge G1 before the 

generation of irregular waves.  The generated waves were measured and analyzed in the same 

way as in the wave overtopping experiment.  The measured free surface elevation above SWL 

included the combined effects of the current and waves.  Table 1 lists the ranges of S, Tp, Tm-1,0, 

ση and R for the 29 overflow (OF) tests.  Irregular waves with larger values of ση could not be 

tested in the overflow experiment because of the limited space between the water level and the 

carriage supporting the wave gauge.  The wave reflection coefficient R decreased somewhat with 

the increase of wave overtopping and overflow because the landward mass flux accompanies the 

landward energy flux.   

 
 
Table 1 also lists the ranges of the measured variables related to wave overtopping and overflow 

for the WO and OF tests where Ni = number of incident waves for the 360-s duration; Po = 

overtopping probability estimated as Po = No/Ni with No = number of overtopped waves, which 

were counted visually; and qo = combined overtopping and overflow rate calculated from the 

pumped water volume and the volume change in the tank during the 360-s duration.  It is noted 
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that the measured values for all the tests were tabulated in the report by Farhadzadeh et al. 

(2007).   

 

Table 1:  Wave Conditions at Wave Gauge G1 and Ranges of Wave Overtopping Measurements  

for Wave Overtopping (WO) and Overflow (OF) Tests  

 

 

Test 

 

Number 

of tests 

 

S 

(cm) 

 

Tp 

(s) 

 

Tm-1,0 

(s) 

 

ση 

(cm) 

 

R 

 

 

Ni 

 

Po 

 

qo 

(cm2/s) 

 

WO 

OF 

 

78 

29 

 

0.0-16.5 

17.2-19.4 

 

1.32-2.50 

1.56-2.06 

 

1.47-2.31 

1.47-1.89 

 

0.84-4.58 

0.73-1.89 

 

0.20-0.46 

0.09-0.34 

 

197-274 

206-271 

 

0.0-1.0 

1.0 

 

0.0-71.6 

26.3-107.5 

 
 
 

9.2  Comparison of EurOtop formulas with experiments 

The measured values of  qo for the 107 tests are compared with the formulas in the EurOtop 

Manual (2007).  For the smooth seaward slope tanθ  = 0.2, the formula for the emerged crest is 

expressed as 

 *
* * *
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where g  = gravitational acceleration; *q  = normalized overtopping rate; ξ  = surf similarity 

parameter; and  *R  = normalized crest height.  Eq. (117) implies that the upper limit of *q  for 

given *R  is given by *0.2exp( 2.6 )R− .  Use is made of the measured values of 1,0,mo mH T −  and η  

at wave gauge G6 located at the toe of the 1/5 slope where the measured values included the 

effect of reflected waves.  The original formula does not include the mean water level η  but its 

effect is examined in the following.  Eq. (117) was obtained for * 0.4R >  but is extrapolated to 

* 0R > , corresponding to excessive wave overtopping.  For the submerged crest with * 0R ≤ , *q  

may be expressed as 

 1.5
* *0.6 0.0537 for 2q R ξ ξ= + <  

  (119) 

 1.5 3
* *0.6 0.136 0.226 for 2q R ξ ξ−= + − ≥  

 

For * 0R = , Eq. (119) reduces to the formula proposed by Schüttrumpf (2001).  The term, 

1.5
*0.6 R , is based on the weir formula for a broad crested structure in the absence of waves.  Eq. 

(119) simply adds the two formulas.  Eqs. (117) and (119) do not yield the same value of *q  at 

* 0R =  but Eq. (117) is extrapolated to * 0R =  because it was based on extensive data sets.  The 

difference of  *q  at * 0R =   is less than a factor of 2 for the 107 tests with *1.1 2.6R− < <  and 

1.8 67ξ< < . 

 

Fig. 7 compares the measured and empirical values of *q  for the 107 tests.  The solid and dashed 

lines in this and subsequent figures indicate the perfect agreement and deviation of a factor of 2, 
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respectively.  Most of the data points fall within the deviation of the factor of 2.  Eqs. (117) and 

(119) are applicable to the cases of excessive wave overtopping and overflow in these tests.  Fig. 

7 indicates that the agreement for * 0.1q ≥  is slightly better if the normalized crest height *R  is 

based on the crest height ( )cR η−  above the mean water level (MWL) at the toe of the 1/5 slope.  

The mean water level η  is affected by wave set-down and setup on the beach seaward of the 

levee as well as onshore flow due to wave overtopping and overflow.  The use of MWL instead 

of SWL for the design of coastal structures may eventually become standard because the coupled 

predictions of wind waves and storm surge in shallow water are now common. 

 

 

Fig. 7.  Measured and empirical wave overtopping and overflow rates for 107 tests. 
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9.3  Comparison of CSHORE empirical formulas with experiments 

The probabilistic model for the wet and dry zone in section 8.1, which has been added in the 

present version of CSHORE, eliminates the need to rely on the empirical formulas given by Eqs. 

(78), (84) and (85) for irregular wave runup and overtopping on the impermeable levee.  These 

formulas were calibrated by Kobayashi et al. (2007c) for the previous CSHORE with no wet and 

dry zone using the present experiments in section 9.1.  The comparison made by Kobayashi et al. 

(2007c) is repeated here using the present CSHORE with the wet and dry zone.  All the empirical 

formulas in section 7 are included in the present CSHORE mainly because the wet and dry 

model is presently limited to impermeable structures.  No additional computation was necessary 

for the following comparison because the present CSHORE computes both the empirical values 

using section 7 and the values computed using the wet and dry model in section 8.1.  The 

computational input was explained by Kobayashi et al. (2007c) and is summarized in section 9.4 

where the computed results using the wet and dry model are presented. 

 

The runup wire placed parallel to the seaward slope and crest of the levee in Fig. 6 was used to 

measure the shoreline oscillation ( )r tη  above SWL for each of the 107 tests.  The vertical height 

rδ  of the wire was approximately 2 cm.  The  measured mean rη  and standard deviation rσ  are 

compared with the values computed in Eq. (73).  Fig. 8 compares the measured and computed 

water level ( )r Sη +  above the datum 0z =  for the 107 tests.  The agreement appears excellent 

because rη  due to waves and overflow is small relative to the still water level increase S  due to 

storm surge and tides in the experiments where the crest height above 0z =  is 16.5 cm.  The 

numerical model underpredicts ( )r Sη +  for the data points with ( )r Sη +  exceeding 18 cm 
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perhaps because Eq. (73) developed for the inclined slope is not really applicable to the 

horizontal crest.  Fig. 9 compares the measured and computed standard deviations rσ .  The 

numerical model overpredicts rσ  for the data points with rσ  less than about 1 cm where these 

data points correspond to the data points with ( )r Sη + > 18 cm.  The numerical model also 

underpredicts  rσ  for the data points with rσ >  4 cm perhaps because Eq. (73) was initially 

developed for permeable slopes. 

 

Fig. 8.  Measured and computed mean water levels of runup wire for 107 tests. 

 

Fig. 10 compares the measured and empirical rates oq  where oq  is predicted using the empirical 

formula given by Eq. (85).  The formula overpredicts oq  by the factor exceeding 2 for some of 

the wave overtopping tests. 
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Fig. 9.  Measured and computed standard deviations of free surface oscillation along runup 

wire for 107 tests. 

 

Fig. 10.  Measured and empirical wave overtopping and overflow rates for 107 tests. 
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Fig. 11 compares the measured and empirical overtopping probabilities oP  where oP  is predicted 

using Eqs. (78) and (84).  The formula tends to underpredict oP  for the data points with oP <  0.5.  

Eq. (78), (84) and (85) could be recalibrated for the present CSHORE but the empirical formulas 

do not appear to be robust as will be shown in section 9.5.   

 

Fig. 11.  Measured and empirical wave overtopping probabilities for 107 tests. 

 

9.4  Comparison of CSHORE wet and dry model with present experiments 

The wet and dry model in section 8.1 is compared with the 107 tests.  The number of nodes with 

constant nodal spacing from 0x =  to the landward end of the levee crest located at cx  = 12.8 m 

in Fig. 6 was 1279.  The breaker ratio parameter γ  used to estimate the breaker height BH  in 

Eq. (38) was taken as γ  = 0.7 in the previous comparisons by Kobayashi et al. (2007b) and 

Kobayashi and de los Santos (2007).  For the present 107 tests, γ  = 0.8  yields slightly better 

agreement for the cross-shore variation of ησ .  The bottom friction factor bf  is calibrated in the 
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range of bf  = 0.0 − 0.005.  The computed oq  changed less than 10%.  The following computed 

results are based on bf  = 0.002.  The computed cross-shore variations of , ,Uηη σ  and Uσ  are 

plotted together with the measured values of η  and ησ  at wave gauges G1 – G6 for all the tests 

(Farhadzadeh et al. 2007).   

 

Wave overtopping test 41 and overflow test 94 are shown in Figs. 12 and 13 as examples.  The 

mean water level ( )Sη +  above 0z =  and the bottom elevation bz  are plotted together in the top 

panel.  The computed wet probability wP  is plotted in the bottom panel where 1wP =  in the wet 

zone.  The computed and measured values vary very little in the region of  0 4.5x≤ ≤  m which 

is omitted in these figures.  The agreement between the measured and computed values for  

( )Sη +  and ησ  at wave gauges G1—G3 is excellent because the measured values at 0x =  are 

specified as input.  For test 41, the mean water level  ( )Sη +  increases landward due to the 

increase of the wave setup η .  The decrease of the wave height represented by ησ  occurs mostly 

on the 1/5 levee slope because of little wave breaking on the beach.  It is noted that the stepped 

change of the computed ησ  occurs sometimes in the transition zone in Fig. 5 because ησ  is not 

matched at SWLx x= .  The offshore (negative) return current  U  is small on the beach and 

increases on the 1/5 slope before U  becomes onshore due to the wave overtopping flow.  The 

standard deviation Uσ  increases gradually on the beach and rapidly on the 1/5 slope before its 

decrease in the very small mean depth in the wet and dry zone where the wet probability  wP  

decreases rapidly on the 1/5 slope and becomes approximately constant on the crest.  For test 94, 
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the computed mean water level  ( )Sη +  exhibits little wave setup due to the water level decrease 

associated with the overflow.  The standard deviation ησ  increases on the 1/5 slope due to 

shoaling and decreases due to wave breaking.  The computed value of ησ  remains approximately 

constant on the submerged levee crest where the mean depth h  is approximately constant.  The 

computed mean velocity U  is almost zero except near the levee crest where U  becomes as large 

as Uσ  due to overflow.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.  Measured (circle) and computed (solid line) mean and standard deviation of free 

surface elevation η  and depth-averaged velocity U  together with wet probability 

wP  for wave overtopping test 41 where mean water level ( )Sη +  and bottom 

elevation bz  are plotted in top panel. 
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Fig. 13.  Measured (circle) and computed (solid line) mean and standard deviation of free 

surface elevation η  and depth-averaged velocity U  together with wet probability 

wP  for overflow test 94 where mean water level ( )Sη +  and bottom elevation bz  

are plotted in top panel. 

 

Fig. 14 compares the measured and computed rates oq  for the 107 tests.  The agreement is within 

the factor of about 2 because of the calibration of the empirical equation (100) using the same 

tests.  Fig. 15 compares the measured and computed probabilities oP  for the 107 tests.  The 

agreement is also within the factor of about 2 because the same tests are used to calibrate the 

empirical relation between oP  and cP  discussed below Eq. (102). Comparisons with additional 

experiments are required to verify the numerical model including its capability of predicting the 

water depth and velocity in the wet and dry zone. 
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Fig. 14.  Measured and computed wave overtopping and overflow rates for 107 tests. 

 

Fig. 15.  Measured and computed wave overtopping probabilities for 107 tests. 

 

9.5  Comparisons with Dutch Experiments 

van Gent (2002b) conducted experiments in a wave flume that was 55 m long, 1.0 m wide, and 

1.2 m high.  A smooth beach with a 1/100 slope was installed in the flume and 7 series for 
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different structures were performed as shown in Fig. 16.  The seaward slope was 1/4 for all the 

series.  The crest height above the toe of the seaward slope was 0.6 m for series A, B, C, D and 

D′ (dikes) and 0.2 m for series E and F (low-crested structures).  The crest width was 0.2 m for 

series A, B and E and 1.1 m for the rest.  The landward slope was 1/2.5 for series A and C and 

1/4.0 for the rest.  The structure surface was smooth except for series D′ for which a single layer 

of gravel of 4.9-mm diameter was glued on the crest and landward slope.  The crest height cR  

shown in Fig. 16 was in the range of 10 – 30  cm for series A, B, C, D and D′ and 7.5 – 10  cm 

for series E and F.  The 18 irregular waves measured at the toe of the 1/4 slope for series A – D′ 

were characterized by moH =  12.6 – 15.3 cm and 1,0mT − =  1.44 – 2.21 s.  The 14 irregular waves 

for series E and F were characterized by moH =  6.2 – 8.2 cm and 1,0mT − =  1.73 – 2.97 s.  The 

mean water level η   above SWL at the toe was not reported by van Gent (2002b) and is assumed 

to be zero in the following computations. 

 

The computation domain starts from the seaward boundary 0x =  at the toe of the 1/4 slope 

where the measured values of moH  and 1,0mT −  for each test are available.  Its landward end is 

located at the downward end of the landward slope at the same elevation as the toe elevation.  

The constant nodal spacing is 0.5 cm.  The empirical parameters for the numerical model are 

kept the same except for the bottom friction factor bf  for the rough crest and landward slope for 

series D′.  Since bf  = 0.002 is assumed for the smooth surface, use is made of bf  = 0.006 for the 

rough surface.  The differences of the computed oq  and oP  for bf  = 0.005 – 0.025 for the rough 

surface are found to be well within the accuracy (a factor of 2) of the present numerical model.   

 



 73 

In short, the calibration of  bf  does not improve the agreement noticeably perhaps because the 

flow through the roughness is not accounted for. 

cR

4
1
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L
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Series 

cot Lθ  BC 
(m) 

dt 
(cm) 

Rc 
(cm) 

 
Roughness 

A 
B 
C 
D 
D′ 
E 
F 

2.5 
4.0 
2.5 
4.0 
4.0 
4.0 
4.0 

0.2 
0.2 
1.1 
1.1 
1.1 
0.2 
1.1 

30 – 50  
30 – 50 
30 – 50 
30 – 50 
30 – 50 

10 – 12.5 
10 – 12.5 

10 – 30 
10 – 30 
10 – 30 
10 – 30 
10 – 30 
7.5 – 10 
7.5 – 10 

smooth 
smooth 
smooth 
smooth 
rough* 
smooth 
smooth 

 
Note:  (dt + Rc) = 60 cm for series A, B, C, D. and D′ 
           (dt + Rc) = 20 cm for series E and F 
 
*Roughness on crest and landward slope 
 

Fig. 16.  Series A, B, C, D, D′′′′, E and F conducted by van Gent (2002). 
 

The empirical formulas for oq  and oP  in the present CSHORE have been compared with the 107 

tests in Figs. 10 and 11.  These formulas are compared with the 118 tests by van Gent (2002b) in 

Figs. 17 and 18.  The formula given by Eq. (85) overpredicts oq  considerably for series A, B, C, 

D and D′ for relatively low probabilities of wave overtopping.  The agreement for series E and F 

is within the factor of about 2.  The formula given by Eqs. (78) and (84) predicts oP  within the 

factor of about 2 for series A and B but tends to overpredict oP  for series C, D and D′ and 
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underpredict it for series E and F.  Figs. 17 and 18 indicate the difficulty in developing robust 

formulas that predict oq  and oP  within the factor of 2 consistently. 

 

Fig. 17.  Measured and empirical wave overtopping rates for 118 Dutch tests. 

 

 

Fig. 18.  Measured and empirical wave overtopping probabilities for 118 Dutch tets. 
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Fig. 19.  Computed mean and standard deviation of free surface elevation ηηηη and depth-

averaged velocity U together with wet probability Pw for series A with wave 

conditions No. 1.06 where mean water level ( )Sη +  and bottom elevation zb are 

plotted in top panel. 
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Fig. 20.  Computed cross-shore variation of mean depth h  and comparisons with measured 

(circle) depth h2%, velocity U2% and discharge q2% for series A with wave 

conditions No. 1.06. 

 

Fig. 19 shows the computed cross-shore variations of the mean water level ( )Sη +  together with 

the bottom elevation bz , the free surface standard deviation ησ , the mean velocity U , the 

velocity standard deviation Uσ , and the wet probability wP  for test 1.06 of series A.  Fig. 19 is 

similar to Fig. 12 except for the computed variations on the landward slope in Fig. 19.  The mean 

depth ( )bh S zη= + −  and ησ  are of the order of 0.1 cm or less on the crest and landward slope, 

whereas U  and Uσ  increase downward on the landward slope and are of the order of 10 cm/s or 

larger.  The wet probability wP , which is assumed to be constant on the landward slope in Eq. 

(103), is of the order of 0.1 on the crest and landware slope.  Fig. 20 shows the computed cross-
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shore variations of , ,e eh h U  and eq  in the zone of x  = 2.1 – 4.1 m in Fig. 19 where ,e eh U  and eq  

are the depth, velocity and discharge corresponding to the exceedance probability e  = 0.01 as 

explained in the following.  The data points in Fig. 20 are the measured values exceeded by 2% 

of the incident 1,000 waves.  The flow in the wet and dry zone in Figs. 19 and 20 is characterized 

by the small water depth and very large velocity during the short wet duration.  The probabilistic 

model for the wet and dry zone in section 8.1 appears to reproduce the essential aspects of this 

intermittent flow. 

 

Fig. 21 compares the measured and computed wave overtopping rates oq  for the 7 series 

consisting of 118 tests.  The agreement is mostly within the factor of 2 but for series E and F, the 

computed oq  is about a half of the measured oq .  The reason for this underprediction is not clear 

but might be related to the neglected mean water level η  at the toe of the 1/4 slope which may 

have been located inside the surf zone for series E and F.  Fig. 22 compares the measured and 

computed wave overtopping probabilities oP  for the 7 series.  The numerical model tends to 

overpredict oP  for series C and D′ but the agreement is within the factor of 2 for the rest.  The 

comparisons for oq  and oP  do not prove that the numerical model can predict the water depth 

and velocity which are more directly related to the erosion of a dike (Schüttrumpf and Oumeraci 

2005).   

 

van Gent (2002b) measured the water depth and velocity at five points for each test as shown in 

Fig. 16.  Points P1 and P2 were located at the seaward and landward ends of the crest, 

respectively.  Points P3, P4 and P5 were located on the landward slope at elevations of 10, 25 
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and 40 cm, respectively, below the crest for series A – D′.  These elevations were 5, 10 and 18 

cm below the crest for series E and F.  The measured water depth and velocity at each point were 

analyzed on the basis of individual wave overtopping events.  The values tabulated in his report 

are the water depth 2%h , velocity 2%U , and discharge 2%q  corresponding to the values exceeded 

by 2% of the incident 1,000 waves.  It is noted that the numerical model is based on the vertical 

depth h  and the horizontal velocity U .  The measured depth was the depth normal to the slope 

and the measured velocity was parallel to the slope.  The differences of h  and U  defined 

differently are less than 8% on the landward slopes of 1/2.5 and 1/4.  These differences are 

neglected in the following comparisons. 

 

Fig. 21.  Measured and computed wave overtopping rates for 118 Dutch tests. 
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Fig. 22.  Measured and computed wave overtopping probabilities for 118 Dutch tests. 

 

For the probability density function ( )f h  given by Eq. (89), the water depth eh  corresponding to 

the exceedance probability e  is given by 

 forw
e w

w

h P
h n P e

P e

� �= >	 

� �

�  (120) 

Using Eq. (92), the velocity eU  and discharge eq  corresponding to the exceedance probability e  

are expressed as 

 ;e e s e e eU gh U q h Uα= + =  (121) 

The probability  e  of eh h>  at given x  is not directly related to the probability based on 

individual overtopping events where the exceedance probability 2% used by van Gent (2002b) is 

normally regarded as an extreme event.  It is assumed that 2% 2% 2%, ,e e eh h U U q q= = =  with e  = 

0.01.  The compared results for e  = 0.005, 0.01 and 0.02 are found to be similar because eh  
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given by Eq. (120) is not very sensitive to e  = 0.005 – 0.02 as long as the wet probability wP  is 

larger than about 0.1. 

 

Fig. 23 compares the measured and computed water depth 2%h  for the 7 series at the five points 

where 2%h  decreases landward on the crest (P1 and P2) and on the landward slope (P3, P4 and 

P5).  The agreement is mostly within the factor of 2 but 2%h  is overpredicted by about 50% for 

series B, C, D and D′.  Fig. 24 compares the measured and computed velocities 2%U  where 2%U  

does not change much on the crest and increases downward on the landward slope.  The 

agreement is mostly within the factor of 2 but 2%U  is underpredicted at points P1 and P2 and 

overpredicted at points P4 and P5.  Fig. 25 compares the measured and computed discharge 2%q .  

The agreement is good with no systematic deviations for series A, B, C, D and D′.  For series E 

and F, some data points deviate more than the factor of 2. 

 

Fig. 23.  Measured and computed water depth 2%h  at five points. 
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Fig. 24.  Measured and computed velocity 2%U  at five points. 

 

 

 

Fig. 25.  Measured and computed discharge 2%q  at five points. 
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9.6  Representative wave periods 1,0mT −  and pT  

The comparisons shown in Figs. 8 – 25 are also made using the measured spectral peak period 

pT  at 0x =  instead of the spectral wave period 1,0mT − .  The compared results for pT  and 1,0mT −  

are almost the same for the present 107 tests and series A, B, C, D and D′.  For these tests, the 

seaward boundary 0x =  is located outside the surf zone and the difference between pT  and  

1,0mT −  is small. For series E and F, the toe of the 1/4 slope may have been located inside the surf 

zone.  The ratio of 1,0/p mT T −  was less than 0.5 for the four wave conditions at 0x = .  For these 

tests with ( )1,0/ 0.5p mT T − <   the agreement is clearly better for 1,0mT −  

 

Figs. 26 – 34 based on the representataive wave period pT  are presented in the following.  The 

corresponding figure based on the representative wave period of 1,0mT −  is indicated in each figure 

so that the two figures can be compared.  The spectral peak period pT  in water depth of about 10 

m or deeper is normally reported in the U.S.  The compared results in Figs. 26 – 34 show that the 

present CSHORE is not sensitive to the representative wave period as long as the seaward 

boundary 0x =  is located outside the surf zone.  Inside the surf zone, the wave characteristics 

may vary rapidly in space and the difference η  between the mean and still water levels may not 

be negligible.  The present CSHORE does not account for low-frequency waves whose effects 

seem to be within the accuracy (factor of 2) of this numerical model. 
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Fig. 26.  Measured (circle) and computed (solid line based on Tp) mean and standard 

deviation of free surface elevation ηηηη and depth-averaged velocity U together with 

wet probability Pw for wave overtopping test 41 where Fig. 12 is based on Tm-1,0. 
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Fig. 27.  Measured (circle) and computed (solid line based on Tp) mean and standard 

deviation of free surface elevation ηηηη and depth-averaged velocity U together with 

wet probability Pw for overflow test 94 where Fig. 13 is based on Tm-1,0. 
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Fig. 28.  Measured and computed (based on Tp) wave overtopping and overflow rates in 

comparison to Fig. 14. 

 

Fig. 29.  Measured and computed (based on Tp) wave overtopping probabilities in 

comparison to Fig. 15. 
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Fig. 30.  Measured and computed (based on Tp) wave overtopping rates in comparison to 

Fig. 21. 

 

Fig. 31.  Measured and computed (based on Tp) wave overtopping probabilities in 

comparison to Fig. 22. 
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Fig. 32.  Measured and computed (based on Tp) water depth h2% at five points in 

comparison to Fig. 23. 

 

 

Fig. 33.  Measured and computed (based on Tp) velocity U2% at five points in comparison to 

Fig. 24. 
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Fig. 34.  Measured and computed (based on Tp) discharge q2% at five points in comparison 

to Fig. 25. 

 

 

10.  Computer Program CSHORE 

The computer program CSHORE is explained sufficiently so that users will be able to use it 

effectively and modify it if necessary.  CSHORE provides various options but only certain 

combinations of the options have been applied and verified as summarized in section 2.  Enough 

explanations are provided in the computer program so that users will be able to follow the 

computer program with additional explanations provided in the following.  It is noted that the 

symbols used in this section are based on those used in the computer program rather than those 

used in the previous sections. 
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10.1  Main program 

The wave action equations (36) or (63), the momentum equations (22) and (23), and the roller 

energy equation (41) are solved using the finite-difference method with constant nodal spacing 

x∆  of a sufficient resolution in very small water depth.  The use of constant small x∆  may be 

justified because CSHORE is very efficient computationally and the use of constant x∆  reduces 

the input preparation time.  It is noted that these governing equations divided by gρ  are solved 

in the main program so that the fluid density ρ  does not appear in the resulting equations. 

 

The differential equations solved numerically can be expressed in the form 

 ( ),
dy

f x y
dx

=  

where x  = cross-shore coordinate, positive onshore; y  = unknown variable that needs to be 

computed; and f  = known function of x  and y .  An improved Euler method of second-order 

accuracy (e.g., Chaudhry 1993) is used to approximate the above equation as follows: 

 
( )

( ) ( )

*
1

*
1 1 1

Predictor: ,

1
Corrector: , ,

2

j j j j

j j j j j j

y y f x y x

y y f x y f x y x

+

+ + +

= + ∆

� �= + + ∆� �

  

where the subscripts j  and ( )1j +  indicate the nodes located at jx  and ( )1j jx x x+ = + ∆  and the 

superscript star denotes a temporary value of 1jy +  at node ( )1j + .  The wave action equation 

(36) or (63) for the free surface standard deviation ησ , the cross-shore momentum equation (22) 

for the wave setup η , and the roller equation (41) for the roller volume flux rq  are solved using 

this Euler method.  On the other hand, the longshore momentum equation (23) is approximated 

by an implicit finite-difference method, which is more stable numerically, to obtain the 
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longshore bottom shear stress byτ  at node ( )1j +  and the corresponding longshore current V  at 

node ( )1j + .   

 

In reality, the four unknown values of , ,Vησ η  and rq at node ( )1j +  involved in the four 

differential equations are computed in sequence and iteratively.  The mean water depth h  given 

by Eq. (1) is uniquely related to the wave setup η  for the given storm tide S  and bottom 

elevation bz .  The convergence of the iteration is based on the difference between the computed 

and guessed values where the metric units are used in the computer program and the 

gravitational acceleration g  = 9.81 m/s2.  The difference for ησ (m), h (m), and V (m/s) must be 

less than EPS1, whereas the difference for rq  (m2/s) must be less than EPS2.  The maximum 

number of the iteration is MAXITE.  The DATA statement in the main program  specifies 

EPS1=10-3, EPS2=10-6 and MAXITE=20 where double precision is used in the entire program.  

It is noted that rq  involves the product of the length and velocity. 

 

The only input in the main program is as follows: 

   WRITE(*,*) ‘Name of Primary Input-Data-File?’ 

   READ(*,5000) FINMIN 

 5000  FORMAT(A12) 

where FINMIN corresponds to the name of the input file which will be read later before the 

computation. 
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10.2  Subroutines 

Subroutines are arranged in numerical order after the main program in order to indicate the 

location of each subroutine in the computer program.  The numerical order approximately 

corresponds to the chronology of the CSHORE development summarized in section 2. 

 

Subroutine 1 OPENER opens all input and output files.  The input file with its name = FINMIN 

is assigned to unit=11 for the READ statement.  The names of the output files start with the letter 

O.  The output file ODOC (unit=20 for the WRITE statement) is used to store the input (to check 

the accuracy of the input file) and the summary of the computed results (to check the overall 

appropriateness of the computed results and to compare with measurements such as wave runup 

and overtopping rates).  The output file OMESSG (unit=40) stores warning and error messages 

generated during the computation.  These messages must be examined carefully if the computed 

results appear questionable.  The other output files are explained in section 10.4. 

 

Subroutine 2 INPUT reads the contents of the input file FINMIN as explained in detail in section 

10.3.  The gravitational acceleration g  is specified as GRAV=9.81 m/s2 in the DATA statement. 

 

Subroutine 3 BOTTOM calculated the bottom elevation ( )b jz x  with ( )1jx j x= − ∆  at node j  

using the input bottom elevations specified at a number of cross-shore locations.  Use is made of 

linear interpolation and smoothing to reduce sharp corners that tend to cause numerical 

irregularity.  This subroutine also computes the nodal spacing x∆  using the input integer JSWL 

which is the number of nodes along the bottom below the datum 0z =  as well as the cross-shore 

bottom slope bxS  of the smoothed bz .  If the bottom is permeable, the lower boundary elevation 



 92 

pz  of the permeable layer (see Fig. 2) is calculated in the same way as bz .  The thickness ph  of 

the permeable layer is obtained using ( ) 0p b ph z z= − ≥ .   

 

Subroutine 4 PARAM computes constant parameters before the landward marching 

computation.  Eqs. (65) and (66) are used to compute the values of 1,pα β  and 2β  using the 

default values of ν  = 10-6 m2/s, 0α  = 1000 and 0β  = 5.  The default value of 2α =  in Eq. (92)

for the wet and dry zone is specified and the value of B  defined in Eq. (97) and other constant 

parameters are calculated.   

 

Subroutine 5 LWAVE solves the dispersion relation for linear waves given by Eq. (2) which is 

rewritten in terms of x kh=  

 
2

21 coth( ) 0
2

pT Q
x D x x

hπ
� �

− − =	 

� �

 

with 

 ; cos sino x yD k h Q Q Qθ θ= = +  

where pT  = representative wave period at 0x =  specified as input; h  = mean water depth at 

given node; ok  = deep water wave number given by ( ) ( )2 22 /o pk gTπ=  calculated in subroutine 

4 PARAM or at the end of the main program if additional wave conditions are specified as input 

at the seaward boundary 0x = .  The above equation is solved using the Newton-Raphson 

method (e.g., Press et al. 1989).  After the wave number /k x h=  is obtained, the linear wave 

quantities such as those defined in Eq. (3) are computed and the wave angle θ  for obliquely 

incident waves is calculated using Eq. (21).  CSHORE provides the option of IWCINT=0 or 1.  
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IWCINT=0 corresponds to the case of no wave and current interaction, which was assumed in 

the earlier version of CSHORE developed for the condition of no or little wave overtopping.  

IWCINT=1 corresponds to the present version of CSHORE which allows considerable wave 

overtopping and overflow.  If IWCINT=0, the terms involving xQ  and yQ  in Eqs. (2), (22), (23) 

and (36) are neglected and 0Q =  in the above equation for x kh= . 

 

Subroutine 6 GBXAGF computes bxG  and fG  using the approximate equations (46) and (48) 

for obliquely incident waves and the exact equations given by Kobayashi et al. (2007b) for 

normally incident waves.  The complementary error function erfc  involved in the exact 

equations is computed using Function ERFCC given by Press et al. (1989).  Subroutine 6 

VSTGBY computes * / TV V σ=  for known byG  using Eq. (47).  The longshore momentum 

equation (23) is solved numerically to obtain byτ  and the corresponding byG  is calculated using 

Eq. (33). 

 

Subroutine 7 DBREAK computes the energy dissipation rate BD  due to wave breaking using 

Eq. (38) and specifies the upper limit of unity for * / hησ σ=  in the wet zone of very shallow 

water.  The other limit of *σ  introduced for irregular wave transmission over submerged porous 

breakwaters by Kobayashi et al. (2007b) has been found to be unnecessary for the other 

applications of CSHORE discussed in section 2.   

 

Subroutine 8 OUTPUT stores most of the computed results in the output files as explained in 

detail in section 10.4. 
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Subroutine 9 POFLOW computes the standard deviation pσ  of the discharged velocity in a 

permeable layer using Eq. (72), the mean cross-shore discharge velocity pU  using Eq. (70), and 

the energy dissipation rate pD  due to flow resistance in the permeable layer using Eq. (68).  

CSHORE provides the option of IPERM = 0 or 1.  IPERM=0 implies an impermeable bottom 

and this subroutine is not called from the main program.  IPERM=1 implies that a permeable 

layer exists in the computation domain where the permeable layer thickness 0ph =  for 

impermeable segments. 

 

Subroutine 10 QORATE is called from the main program after the landward marching 

computation in the wet zone if the option of IOVER=1 is specified as input to allow wave 

overtopping and overwash in the computation domain.  No wave overtopping is allowed if 

IOVER=0 and the wave overtopping rate 0oq = in Eqs. (19) and (62).  The combined wave 

overtopping and overflow rate oq  is obtained by calling subroutine 16 WETDRY.  After the 

convergence of repeated landward computations to obtain oq , the quantities related to wave 

runup and overtopping are computed using the equations in section 7.  The formulas given by 

Eqs. (80) and (85) yield the empirical rate oq  in comparison to the rate oq  computed using the 

present wet and dry model.  The uncertainties of the empirical and computed oq  are large (at 

least a factor of 2) and it is prudent to compare the two values of oq .   

 

Subroutine 11 SEDTRA computes the sediment transport quantities in the wet zone using the 

equations in section 5 after the landward marching computation of the hydrodynamic quantities 
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is completed.  This subroutine is called from the main program only for the option of 

IPROFL=1, corresponding to a movable bottom.  For a fixed bottom, IPROFL=0 must be 

specified as input.  The computation is performed separately for normally incident waves 

(integer IANGLE=0) and for obliquely incident waves (IANGLE=1) partly because of the 

CSHORE development history discussed in section 2 and partly because of no longshore 

sediment transport for IANGLE=0.  The sediment transport quantities in the wet and dry zone 

are computed using the equations in section 8.2 only for IANGLE=0 and IOVER=1. 

 

Subroutine 12 CHANGE computes the bottom elevation change from the present time level to 

the next time level using Eq. (61) with / 0yq y∂ ∂ = .  The finite difference equations for the 

profile change computation given by Tega and Kobayashi (1999) are of second-order accuracy.  

The time step t∆  for the profile change computation is computed using the numerical stability 

criterion of the adopted explicit finite difference method.  The profile change is computed if 

IPROFL=1. 

 

Subroutine 13 INTGRL integrates a function numerically using a modified Simpson’s rule (e.g., 

Press et al. 1989).  This subroutine is used in Subroutine CHANGE to ensure that the computed 

profile change satisfies the conservation of the sediment volume in the entire computation 

domain. 

 

Subroutine 14 SMOOTH smoothes the cross-shore variation of a variable that depends on x .  

Simple moving averaging is performed using NPT nodes landward and seaward of a specified 

node.  The default value of NPT=5 is given in the DATA statement.  NPT=1 corresponds to no 
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smoothing.  The smoothing of certain variables reduces sudden changes and improves numerical 

stability.  Some variables are smoothed before their storage and plotting. 

 

Subroutine 15 EXTRAPO called from Subroutine SEDTRA is used to extrapolate a finite 

sediment transport rate at the landward end node of the computation to zero transport rate on the 

landward dry zone after the introduction of the scarping algorithm given by Eq. (60).  The 

number of nodes for the extrapolation is specified by NPE.  The default value of NPE=5 is given 

in the DATA Statement.  If wave overwash is allowed by choosing the option IOVER=1, this 

subroutine is not used. 

 

Subroutine 16 WETDRY computes the hydrodynamic quantities in the wet and dry zone using 

the equations in section 8.1.  Function GBWD following this subroutine computes the value of 

( )bG r  for given r  using Eqs. (98) and (99). 

 

Subroutine 17 TRANWD called from the main program and subroutine SEDTRA connects the 

computed values by the wet model and the wet and dry model in the overlapping zone because 

the transition between the two different models is somewhat artificial.  The overlapping zone and 

transition algorithm are discussed at the end of section 8.1. 

 

Subroutine 18 PROBWD computes the probabilities of sediment movement and suspension 

using Eqs. (105), (106) and (107) as well as Eqs. (108), (109) and (110) where only the critical 

fluid velocities cbU  and csU  are different in these equations.  Function GDWD computes the 
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value of ( )dG r  for given r  using Eqs. (113) and (114).  Function GDWD is placed immediately 

after Subroutine PROBWD. 

 

10.3  Input 

A user of CSHORE must read Subroutine 2 INPUT and learn how to prepare the primary input 

data file.  Input parameters and variables are read using the FORMAT statements at the end of 

Subroutine INPUT.  A user must follow the FORMAT requirements so that a correct input value 

is assigned to the specific input parameter or variable.  This requirement may not be convenient 

but the resulting input file is orderly and can be checked easily.  In the following, the input 

parameters and variables are explained in the sequence described in Subroutine INPUT. 

 

• NLINES is the number of lines used to identify a specific input file because a number of input 

files can become large when CSHORE is compared with a number of data sets with different 

bottom profiles. 

 

• (COMMEN(J), J=1, 14) read for NLINES lines contains the description of the input file.  The 

comments in these lines do not affect the computed results at all. 

 

• IPROFL = 0 or 1 for a fixed or movable bottom where the profile evolution is computed for 

IPROFL=1. 

 

• IPERM = 0 or 1 for an impermeable or permeable bottom where the parameters for the 

permeable layer must be specified later if IPERM=1. 
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• IOVER = 0 or 1 for no wave overtopping or combined wave overtopping and overflow at the 

landward end of the computation domain where wave overwash and dune profile evolution are 

computed if IOVER=1 and IPROFL=1. 

 

• IWCINT = 0 or 1 for no or yes for wave and current interactions where the terms involving 

xQ  and yQ  in Eqs. (2), (22), (23), (36) and (63) are neglected if IWCINT=0.  Wave and 

current interactions are not negligible if the current velocity becomes as large as the wave 

phase velocity C . 

 

• IROLL = 0 or 1 for no or yes for roller effects where the roller volume flux 0rq =  and 

r BD D=  in Eq. (41) for IROLL=0.  The option IROLL=1 improves the prediction of 

longshore current on a beach and dune erosion but the roller effects have found to be 

negligible for coastal structures with steeper slopes. 

 

• IWIND = 0 or 1 for no or yes for wind effects where the wind stresses sxτ  and syτ  on the sea 

surface are neglected in Eqs. (22) and (23) if IWIND=0. 

 

• JSWL = number of nodes along the bottom below the datum 0z =  used to determine the 

nodal spacing / JSWLsx x∆ =  where sx  = cross-shore distance between the seaward boundary 

0x =  and the shoreline located at the bottom elevation 0bz = .  The values of JSWL used in 

the previous computations were of the order of 1000.  The corresponding values of x∆  were of 
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the order of 0.01 m and 1.0 m for laboratory and field data, respectively.  The integer NN in 

the PARAMETER statement specifies the maximum number of nodes allowed in the 

computation domain.  The default value of NN = 200,000 should be sufficient for any 

CSHORE computation. 

 

• GAMMA = empirical breaker ratio parameter γ  in Eq. (38) where the range of γ  = 0.5 – 1.0 

has been used to adjust the computed cross-shore variation of the wave height in comparison 

with the measured wave height variation.  If no wave height data is available, use may be 

made of γ  = 0.7 or 0.8. 

 

• D50, WF and SG = median sediment diameter 50d  (mm), sediment fall velocity fw  (m/s), and 

sediment specific gravity s  if IPROFL=1.  The default values for the sediment in subroutine 

INPUT are the sediment porosity pn  = 0.4 in Eq. (61), the critical Shields parameter cψ  = 0.05 

for Eq. (49), the suspension efficiency Be  = 0.005 and fe  = 0.01 in Eq. (51), the suspended 

load parameter a  = 0.2 in Eq. (52), the bedload parameter b  = 0.002 in Eqs. (56) and (57), 

and the sediment maximum slope tanφ  = 0.63 in Eqs. (52), (58) and (59).   

 

• RWH = runup wire height ( )r mδ  shown in Fig. 3 only if IOVER=1.  If no runup wire is 

deployed, use may be made of rδ  = 0.02 m for small-scale experiments and rδ  = 0.1 m for 

prototype beaches and structures.  The range of  rδ  = 0.01 – 0.1 m is realistic for a runup wire 

placed above a slope. 
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• SNP and SDP = porosity pn  and nominal diameter 50nD  of stone used in Eqs. (65) and (66) 

only if IPERM=1 and a permeable layer is constructed of stone.  If other materials are used for 

slope protection, formulas corresponding to Eqs. (65) and (66) will need to be developed. 

 

• NWAVE = number of waves and water levels at the seaward boundary 0x = .  If IPROFL=0 

and the bottom is fixed, NWAVE is the number of different waves and water levels at 0x =  

examined for this specific fixed bottom.  If IPROFL=1 and the bottom profile evolves from the 

specified initial profile, NWAVE is the number of sequential waves and water levels at 0x =  

during the profile evolution starting from the morphological time 0t = .  It is noted that 

NWAVE must not exceed the integer NB in the PARAMETER Statement where NB=30,000 

is specified. 

 

• TIMEBC(I+1), TPBC(I), HRMSBC(I), WSETBC(I), SWLBC(I), WANGBC(I) for I=1,2,…, 

NWAVE where 

TIMEBC(I+1) = morphological time in seconds at the end of the I-th wave and water level 

during the profile evolution starting from TIMEBC(1) = 0.0.  The wave conditions and 

water level during TIMEBC(I) to TIMEBC(I+1) are assumed to be constant.  For 

IPROFL=0, TIMEBC(I+1) = 1.0, 2.0, …, NWAVE may be used to identify the sequence 

of the waves and water levels at 0x =  used for the computation. 

TPBC(I) = spectral peak period pT (s) used to represent the I-th irregular wave period at 

0x =  but any representative wave period can be specified. 
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HRMSBC(I) = root-mean-square wave height 8 ( )rmsH mησ=  used to represent the I-th 

irregular wave height at 0x = .  If the spectral significant wave height moH  is known, the 

corresponding rmsH  may be obtained using / 2rms moH H= . 

WSETBC(I) = wave setup (positive) or set-down (negative) ( )mη  at 0x =  relative to the 

still water level (SWL).  If η  is not measured, use may be made of η  = 0.0 at 0x =  as 

long as the seaward boundary 0x =  is located outside the surf zone. 

SWLBC(I) = still water level S  (m) above the datum 0z =  as shown in Fig. 2.  This value 

of S  corresponds to storm tide (sum of storm surge and tide) during the I-th wave 

conditions. 

WANGBC(I) = incident wave angle θ  in degrees at 0x =  for the I-th wave conditions (see 

Fig. 1 for the definition of θ ).  The angle is limited to the range of θ  = − 80° to 80° 

because the formula for BD  given by Eq. (38) was originally developed for normally 

incident waves and may not be valid for large incident wave angles.  IANGLE=0 or 1 is 

used to indicate normally or obliquely incident waves in the computer program. 

 

• NBINP = number of points used to describe the input bottom geometry which is the initial 

profile if IPROFL=1.  The bottom geometry is divided into linear segments of different 

inclination and roughness starting from the seaward boundary 0x = .  It is noted that NBINP 

must not exceed NB = 30,000 in the PARAMETER statement. 

 

• XBINP(1) and ZBINP(1) = values (m) of x  and z  of the bottom point at the seaward 

boundary in the coordinate system ( ),x z  shown in Fig. 2 where XBINP(1) = 0.0 at the 
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seaward boundary  and the water depth below the datum 0z =  is given by − ZBINP(1).  If 

IPERM=1, ZPINP(1) = ZBINP(1) is specified in the program because the thickness of a 

permeable layer is assumed to be zero at the seaward boundary. 

 

• If IPERM=0, XBINP(J), ZBINP(J) and FBINP(J-1) for J=2,3,…,NBINP where  

 

XBINP(J) = horizontal (landward) distance (m) of the input bottom point J from the seaward 

boundary 0x =  with the distance XBINP(J) increasing with the increase of the integer J. 

ZBINP(J) = bottom elevation ( )bz m of the point J.  If the point J is below the datum 0z = , 

ZBINP(J) is negative and − ZBINP(J) is the water depth below the datum.  If the point J 

is above the datum, ZBINP(J) is positive and corresponds to the bottom elevation of the 

point J above the datum. 

FBINP(J-1) = bottom friction factor bf  of the linear segment between the bottom points 

(J−1) and J.  The bottom friction factor can be varied to account for the cross-shore 

variation of bottom roughness as shown in Fig. 2. 

 

• If IPERM=1, XBINP(J), ZBINP(J), FBINP(J−1) and ZPINP(J) for J=2,3,…,NBINP where 

ZPINP(J) = value (m) of the z -coordinate of the lower impermeable boundary pz  of the point 

J as shown in Fig. 2.  The vertical thickness of the permeable layer is given by ( )p b ph z z= − . 

 

• If IWIND=1, W10(I) and WANGLE(I) for I=1,2,…,NWAVE where  
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W10(I) = wind speed 10W (m/s) at the elevation of 10 m above the sea surface between the 

time levels TIMEBC(I) and TIMEBC(I+1) used to specify the waves and water levels at 

the seaward boundary. 

WANGLE(I) = wind direction wθ  in degrees (see Fig. 1) corresponding to the wind speed 

W10(I). 

 

10.4  Output 

A user of CSHORE must examine the contents of the output file ODOC (unit=20 for the 

WRITE statement) to ensure that the input file has been prepared and read correctly.  The 

contents of this file created in Subroutine 8 OUTPUT and at the end of Subroutine 10 

QORATE if IOVER=1 are self-explanatory.  The notations that have not been explained 

previously are explained in the following. 

 

First, ODOC stores the input parameters and variables. 

RBZERO = lower limit of the wave-front slope rβ  in Eq. (10) where RBZERO = 0.1 specified 

in Subroutine 2 INPUT where this typical value has been used to reduce the number of 

calibration parameters. 

JCREST = crest node of the maximum bottom elevation for the input bottom profile ( )bz x .  If 

the crest is horizontal, JCREST corresponds to the landward end of the horizontal crest 

located at cx x=  in Fig. 5.  If IPROFL=1, the nodal location of JCREST may change with the 

evolution of the bottom profile. 

RCREST = input bottom elevation (m) at the node JCREST corresponding to the maximum 

value of the input ( )bz x . 
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AWD = parameter α  in Eq. (92) which expresses the  horizontal velocity U  as a function of the 

water depth h  in the wet and dry zone where 2α =  is specified in Subroutine 4 PARAM but 

this specified value could be calibrated if necessary. 

EWD = exceedance probability e  used in Eq. (120) for the comparison with measured values 

corresponding to 2% of incident irregular waves where e  = EWD = 0.01 in Subroutine 4 

PARAM. 

It is noted that JCREST, RCREST, AWD, and EWD are stored only if IOVER=1. 

 

Second, ODOC stores the computed quantities at time = TIMEBC(1)=0.0, TIMEBC(2)=,…, 

TIMEBC(NWAVE+1).  The stored quantities of the ODOC file include 

JR = most landward node reached by the landward marching computation using the wet model in 

section 4 if IPERM=0 and in section 6 if IPERM=1. 

XR = x -coordinate (m) of the node JR where XR = rx  shown in Fig. 5 for an emerged structure 

or beach. 

ZR = z -coordinate (m) of the node JR corresponding to the bottom elevation above the datum. 

H(JR) = mean water depth h  (m) at the node JR which must be very small for an emerged 

structure or beach if the landward marching computation does not encounter numerical 

difficulties. 

 

CSHORE estimates the wave reflection coefficient assuming that the cross-shore wave energy 

flux xF  defined in Eq. (37) is reflected from the node JSWL of the still water shoreline location 

at SWLx x=  in Fig. 5 and propagates seaward if JR > JSWL (the landward marching computation 

has reached above the still water shoreline) and JSWL < JMAX with JMAX = most landward 
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node of the computation domain based on the input bottom geometry.  If JSWL = JMAX, the 

computation domain is submerged and some of the cross-shore wave energy flux is transmitted 

landward.  The wave reflection coefficient REFCOF is estimated as the ratio between refσ  and 

ησ  at 0x =  where refσ  is the free surface standard deviation due to the wave energy flux 

propagating seaward at 0x = .  The estimated wave reflection coefficient may not be very 

accurate (Kobayashi et al. 2005, 2007a) but is useful in assessing the applicability of CSHORE 

which neglects reflected waves in its governing equations. 

 

If IOVER=1, Subroutine OUTPUT calls Subroutine QORATE with ICALL=1 to store the 

following quantitie in the file ODOC: 

JWD = most seaward node of the landward marching computation in the wet and dry zone as 

explained in relation to Eq. (100). 

H1 = mean water depth 1( )h m  at the node JWD. 

JDRY = most landward node in the wet and dry zone which is less than and equal to the 

maximum node number JMAX in the computation domain. 

POTF = wave overtopping probability oP  estimated using the wet probability cP  at the node 

JCREST. 

WDN = empirical parameter n  introduced in Eq. (100). 

QOTF = combined overtopping and overflow rate 2( / )oq m s  computed using Eq. (95) with 

0sU =  at the node JCREST where the wet and dry model in section 8.1 is limited to an 

impermeable bottom at present. 

QOS = seepage rate 2( / )sq m s  estimated using Eq. (83). 
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QONEW = computed total rate (m2/s) which is the sum of QOTF and QOS. 

 

In addition, the following quantities computed using the more empirical equations in section 7 

are stored in the file ODOC at the specified time levels: 

SWL = still water level S  (m) above the datum 0z = . 

RCREST = structure crest elevation (m) above the datum where the crest height cR  above SWL 

shown in Fig. 3 is given by cR  = (RCREST − S). 

TSLOPE = seaward slope tanθ  of the structure in Eq. (75). 

XE = x -coordinate ex  (m) of the landward end of the permeable layer shown in Fig. 2 and used 

in Eq. (83) where ex  corresponds to cx  for an impermeable structure in Fig. 5 but the wet and 

dry model is limited to an impermeable bottom at present. 

ZE = z -coordinate ez (m) corresponding to ( )pz x  at x =  XE shown in Fig. 2 and used in Eq. 

(83). 

RWH = runup wire height rδ (m). 

ITEQO = number of iterations to obtain the convergence of the combined overtopping and 

overflow rate QO. 

ICONV = integer used to check the ITEQO iterations where ICONV=0 implies the convergence 

and ICONV=1 indicates no convergence probably due to numerical oscillations.  If 

ICONV=1, the file OMESSG must be checked to examine the degree of the numerical 

oscillations of QO. 
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ERMEAN = mean shoreline elevation (m) above the datum 0z =  measured by the runup wire 

where ERMEAN = ( )r Sη +  and rη  given in Eq. (73) is the mean shoreline elevation above 

SWL. 

SIGRUN = standard deviation rσ (m) of the shoreline oscillation measured by the runup wire 

where rσ  is estimated using Eq. (73). 

RKAPPA = shape parameter κ  for the Weibull distribution given in Eq. (77) or (84). 

R13 = significant runup height (m) above the datum 0z =  corresponding to ( )1/3R S+  where 

1/3R  above SWL is estimated using Eq. (75) or (84). 

R2P = runup height (m) above the datum 0z =  for the 2% exceedance probability where R2P = 

( )2%R S+  and 2%R  is given by Eq. (79). 

PO = wave overtopping probability oP  estimated empirically using Eq. (78). 

QOS = seepage rate sq  (m2/s) estimated using Eq. (83). 

QSWL = wave-induced onshore flux SWLq  given by Eq. (81). 

QOT = wave overtopping rate (m2/s) corresponding to the first term on the right hand side of Eq. 

(80) or (85). 

QOF = overflow rate (m2/s) corresponding to the second term on the right hand side of Eq. (85). 

QOEMP = empirical total rate (m2/s) which is the sum of QOS, QOT and QOF. 

 

If IPROFL=1 and IANGLE=1 (obliquely incident waves), Subroutine OUTPUT integrates the 

sum of the longshore suspended sediment transport rate syq  (m2/s) and the longshore bedload 

transport rate byq  (m2/s) from 0x =  to rx x=  in the wet zone where syq  and byq  are predicted 
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using Eqs. (52) and (57), respectively.  The integrated total longshore sediment transport rate 

(m3/s) and the corresponding value of K  in the CERC formula (Coastal Engineering Manual 

2003) are stored in the file ODOC.  The breaker location is taken at the cross-shore location of 

the maximum root-mean-square wave height and the value of K  in the CERC formula is 

supposed to be of the order of 0.8. 

 

The rest of the output files store the cross-shore variations of computed variables at the specified 

time levels TIMEBC(I) with I = 1, 2, …, (NWAVE+1).  Each output file stores the number of 

nodes and the output time level immediately before the computed variables are stored at the 

given number of nodes.  This will facilitate displaying the computed variables using the output 

files.  It is noted that the CSHORE computer program does not contain any plotting routine. 

 

The file OBPROF (unit=21) contains the bottom profile variables at all the nodes with 

J=1,2,…,JMAX. 

XB(J) = cross-shore coordinate x (m) of node J where XB(J) = (J−1)* x∆  does not change with 

time. 

ZB(J) = vertical coordinate bz (m) of the bottom elevation at the output time level where the 

bottom elevation evolves with time if IPROFL=1.  

ZP(J) = vertical coordinate pz (m) of the lower boundary of the permeable layer only if 

IPERM=1 where pz  has been assumed to be fixed so far.  

 

The file OSETUP (unit=22) stores the quantities related to the mean and standard deviation of 

the free surface elevation η  for nodes J=1,2,…,JR 
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XB(J) = cross-shore coordinate x (m) of node J for the plotting convenience. 

(WSETUP(J)+SWLBC(IWAVE)) = sum of the wave setup η (m) and storm tide S (m) at node J. 

H(J) = mean water depth h (m) at node J. 

SIGMA(J) = free surface standard deviation ησ (m) related to the root-mean-square wave height 

8rmsH ησ= . 

If IOVER=1, these variables are also stored at nodes J=(JR+1),…,JDRY in the wet and dry zone. 

 

The file OPARAM (unit =23) stores XB(J) with nodes J=1,2,…,JR and the following 

parameters: 

WT(J) = intrinsic wave period 2 /T π ω= (s) where the angular frequency ω  is computed using 

Eq. (2). 

QBREAK(J) = fraction Q  of breaking waves computed using Eq. (38). 

SIGSTA(J) = ratio * / hησ σ=  in Eq. (31) whose upper limit is unity. 

 

The file OXMOME (unit=24) stores XB(J) with J=1,2,…JR and the following terms in the x-

momentum equation (22): 

SXXSTA(J) = ( ) ( )2/ /xx xS g Q ghρ� �+
� �

(m2) where xxS  and xQ  are given in Eqs. (24) and (19), 

respectively. 

TBXSTA(J) = ( )/bx gτ ρ (m) where bxτ  is given in Eq. (33). 

 



 110 

If  IANGLE=1 (obliquely incident waves), the file OYMOME (unit=25) stores XB(J) with 

J=1,2,…,JR and the following terms in the y-momentum equation (23): 

SXYSTA(J)  = ( ) ( )/ /xy x yS g Q Q ghρ� �+
� �

(m2) where xyS , xQ  and yQ  are defined in Eqs. (24), 

(19) and (20). 

TBYSTA(J)  = ( )/by gτ ρ (m) where byτ  is given in Eq. (33). 

 

The file OENERG (unit=26) stores XB(J) with J=1,2,…,JR and the following terms in the wave 

action equation (36) or (63) with ω  being replaced by 1T − : 

EFSTA(J) = ( ) ( )ET cos / /g xC Q h gθ ρ� �+
� �

(m3) where E and gC  are given in Eqs. (25) and (3). 

DBSTA(J) = ( )/BD gρ (m2/s) where BD  is given by Eq. (38). 

DFSTA(J) = ( )/fD gρ (m2/s) where fD  is given by Eq. (40). 

 

The file OXVELO (unit=27) stores XB(J) with J=1, 2, …, JR and the following cross-shore 

velocity statistics: 

UMEAN(J) = mean velocity U  (m/s) of the depth-averaged cross-shore velocity U . 

USTD(J) = standard deviation Uσ  (m/s) of U . 
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If IOVER=1, these variables are also stored at nodes J = (JR+1), …, JDRY in the wet and dry 

zone. 

 

If IANGLE=1, the file OYVELO (unit=28) stores XB(J) with J=1, 2, …, JR and the following 

longshore velocity statistics: 

STHETA(J) = sinθ  with θ  = wave angle as defined in Fig. 1 where sinθ  is computed using 

Eq. (21). 

VMEAN(J) = mean velocity V  (m/s) of the depth-averaged longshore velocity V . 

VSTD(J) = standard deviation Vσ  of V . 

It is noted that the present wet and dry model is limited to normally incident waves 

(IANGLE=0). 

 

If IROLL=1, the file OROLLE (unit=29) stores XB(J) with J=1, 2, …, JR and 

RQ(J) = roller volume flux rq  (m2/s) computed using Eq. (41). 

If IROLL=0, 0rq =  and r BD D=  in Eq. (41). 

 

If IPROFL=1, the file OBSUSL (unit=30) stores XB(J) with J=1,2, …, JR and the following 

variables related to sediment transport: 
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PB(J) = probability bP  of sediment movement. 

PS(J) = probability sP  of sediment suspension. 

VS(J) = suspended sediment volume sV  (m) per unit horizontal bottom area. 

If IOVER=1, these variables are also stored at nodes J = (JR+1), …, JDRY in the wet and dry 

zone. 

 

If IPERM=1,the file OPORUS (unit=31) stores XB(J) with J=1, 2, …, JR and the following 

variables related to the permeable layer: 

UPMEAN(J) = mean velocity pU  (m/s) of the cross-shore discharge velocity pU  inside the 

permeable layer. 

UPSTD(J) = standard velocity pσ  (m/s) of the discharge velocity computed using Eq. (72). 

DPSTA(J) = ( )/pD gρ  (m2/s) where the energy dissipation rate pD  due to flow resistance in the 

permeable layer is computed using Eq. (68). 

 

If IPROFL=1, the file OCROSS (unit=32) stores XB(J) with J=1, 2, …, JMAX and the 

following cross-shore sediment transport rates: 

QBX(J) = cross-shore bedload transport rate bxq  (m2/s). 
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QSX(J) = cross-shore suspended sediment transport rate sxq  (m2/s). 

(QBX(J) + QSX(J)) = cross-shore total sediment transport rate xq  (m2/s). 

It is noted that the transport rates are stored at all the nodes but the rates are zero in the 

completely dry zone. 

 

If IPROFL=1 and IANGLE=1, the file OLONGS (unit=33) stores XB(J) with J=1,2, … JMAX 

and the following longshore sediment transport rates: 

QBY(J) = longshore bedload transport rate byq  (m2/s). 

QSY(J) = longshore suspended sediment transport rate syq  (m2/s). 

(QBY(J) + QSY(J)) = longshore total sediment transport rate yq  (m2/s). 

 

If IOVER=1 and JR < JMAX (the wet and dry zone exists in the computation domain), the files 

OSWASH (unit=34) and OSWASU (unit=35) store XB(J) with the nodes J=JWD, …, JDRY 

only in the wet and dry zone and the computed hydrodynamic variables in this zone.  The 

additional variables stored in OSWASH are 

PWET(J) = wet probability wP  at node J corresponding to the ratio between the wet duration and 

the total duration at this node. 

H(J) = mean water depth h  (m) during the wet duration only. 
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HEWD(J) = water depth eh  (m) corresponding to the exceedance probability e  = EWD where 

EWD = 0.01 specified in Subroutine 4 PARAM.  Eq. (89) yields ( ) ( )/ /e w wh h P n P e= �  for 

wP e> . 

 

The additional variables stores in OSWASU are  

UMEAN(J) = mean cross-shore velocity U  (m/s) during the wet duration only. 

UEWD(J) = cross-shore velocity eU  (m/s) corresponding to the exceedance probability e = 

EWD where Eq. (92) yields ( )e e sU gh Uα= +  because U  increases with the increase of h  

monotonically in the wet and dry zone. 

QEWD(J) = cross-shore volume flux e e eq h U=  (m2/s) corresponding to the exceedance 

probability e = EWD. 

 

A user of CSHORE may not be interested in the computed results in all the output files but 

should examine all the appropriate output files and ensure that the computed results are realistic 

physically.  This is especially true if CSHORE is applied to new problems where the previous 

applications of CSHORE have been summarized in section 2. 
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11.  CONCLUSIONS 
    
The horizontally two-dimensional model C2SHORE and the cross-shore model CSHORE are 

presented.  The numerical model C2SHORE is based on the spectral wave model STWAVE 

(Smith et al. 2001) for the prediction of the directional wave transformation, radiation stresses, 

and wave-induced volume fluxes and the circulation model, which is a simplified version of 

SHORECIRC (Svendsen et al. 2002) for irregular waves, for the prediction of the wave setup 

and depth-averaged current velocities.  An efficient finite difference method used for the 

circulation computation has reduced the computation time significantly.  The combined wave 

current model CSHORE based on the time-averaged continuity, cross-shore momentum, 

longshore momentum, wave action and roller energy equations predicts the cross-shore 

variations of the mean and standard deviation of the free surface elevation and depth-averaged 

cross-shore and longshore velocities under normally or obliquely incident irregular breaking 

waves.  Both models use the same sediment transport formulas for the cross-shore and longshore 

transport rates of suspended sediment and bedload on sand beaches.  These formulas are 

relatively simple and require the hydrodynamic input variables which can be predicted efficiently 

and fairly accurately using existing wave and current models.   The numerical model C2SHORE 

has been compared only with one set of field data partly because of its complexity and partly 

because of lack of bench mark data.  The much simpler model CSHORE has been compared 

with a number of small-scale and large-scale laboratory data and is ready for practical 

applications.  CSHORE has been extended to the intermittently wet and dry zone for the 

prediction of wave overwash, levee erosion and deformation of a low-crested stone structure. 
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The computer program CSHORE has been developed with collaboration of a number of graduate 

students and visiting scientists for the last 10 years.  The essential parts of CSHORE and the 

details of the input and output are described in this report in order to facilitate the use of 

CSHORE by the broad coastal community.  CSHORE based on the time-averaged governing 

equations is much easier to apply than the corresponding time-dependent model developed by 

the first author of this report (e.g., Kobayashi and Wurjanto 1990, 1992).  A user of CSHORE for 

a specific problem should read references in section 2 that are related to the specific problem 

because the user will need to interpret the computed results.  CSHORE provides various options 

but only certain combinations of the options have been examined in the previous computations in 

section 2.  Finally, CSHORE will be extended to predict dune overwash and breaching, levee 

erosion and breaching, and damage progression of coastal stone structures.  These extensions are 

necessary for the performance and risk-based design of a coastal protection system that may 

consist of dunes, earthen levees and stone structures on sand beaches. 
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