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ABSTRACT 
 

 
The majority of the world shoreline is currently suffering from erosion.  Beach erosion will 

become more serious if the mean sea level rise accelerates because of the greenhouse effect.  

Nourishment and maintenance of wide sand beaches for developed coastal communities will 

become more expensive unless the present nourishment design method is improved by the 

development of a reliable morphological model.  Concurrently, the recent increase of coastal 

storm damage demands the development of numerical models for predicting the damage 

progression and breaching of coastal stone structures and earthen levees during extreme storms.  

This report summarizes our continuing effort to improve our quantitative understanding of 

beach morphology and structural damage progression with the goal to develop simple and 

robust models that are suited for engineering applications.  Our effort for the last 10 years has 

produced the cross-shore numerical model CSHORE which is presently limited to the case of 

alongshore uniformity.  CSHORE consists of the following components: a combined wave and 

current model based on time-averaged continuity, cross-shore and longshore momentum, wave 

action, and roller energy equations; a sediment transport model for suspended sand and bedload; 

a permeable layer model to account for porous flow and energy dissipation; empirical formulas 

for irregular wave runup; and a probabilistic model for an intermittently wet and dry zone on 

impermeable and permeable bottoms for the purpose of predicting wave overwash of a dune and 

armor layer damage progression, respectively.  The theories and formulas used in CSHORE are 

explained in this report in order to facilitate the application of CSHORE to various coastal 

engineering problems.  Finally, the computer program CSHORE is explained so that a user of 

CSHORE will be able to use it effectively and modify it if necessary.  This report of 

CSHORE2009 updates the earlier report of CSHORE2008 in such a way that a user will not 

have to read the earlier report. 
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1.  Introduction 

 

A sand beach with a wide berm and a high dune provides storm protection and damage 

reduction, recreational and economical benefits and biological habitats for plants and animals.  

Most sandy beaches are eroding partly due to sea level rise.  Beach nourishment is widely 

adopted to maintain a wide beach for a developed coastal community if a suitable beachfill is 

available in the vicinity of an eroding beach.  Empirical methods based on field data have been 

developed for the design of beach fills (Coastal Engineering Manual 2003).  The design of the 

cross-shore beachfill profile is normally based on the concept of an equilibrium beach profile.  

The alongshore spreading of the beachfill is generally predicted using a one-line model coupled 

with the CERC formula or the formula by Kamphuis (1991) for the longshore sediment transport 

rate.  These simple beachfill design methods have been criticized and a number of more process-

based models have been proposed.  However, the process-based models may not necessarily be 

more accurate at present.   

 

Sediment transport is caused by the combined action of waves and currents.  Our capabilities of 

predicting wave and current fields have improved steadily for the last 30 years.  However, the 

predictive capability of sediment transport on beaches has not improved much.  The major 

reason for this discrepancy is that no dynamic equation is available to describe the motion of a 

large number of sediment particles.  Consequently, sediment transport models are essentially 

empirical and dependent on reliable sediment transport data.  Unfortunately, sediment dynamics 

on beaches are highly complex and involve wide ranges of morphological scales in time and 

space.  Correspondingly, available sediment transport models have become more complex and 

less transparent.  We have tried to synthesize available data and formulas in order to develop 
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simple and transparent formulas for the cross-shore and longshore transport rates of suspended 

sand and bedload on beaches.  The simple formulas need to include basic sediment dynamics 

sufficiently so that the formulas will be applicable to small-scale and large-scale laboratory 

beaches as well as natural beaches.  Furthermore, the morphological model should be very 

efficient computationally because the model will need to be calibrated and verified using 

extensive data sets.  The hydrodynamic input required for the morphological model should be 

limited to the quantities that can be predicted routinely and reliably.  These considerations have 

guided our development of the cross-shore model CSHORE which is presently limited to the 

conditions of alongshore uniformity and uniform sediment. 

 

Coastal storm damage has been increasing mostly due to the recent growth of coastal population 

and assets and possibly due to the intensification of hurricanes caused by global warming.  

Coastal structures including earthen levees (dikes) and rubble mound structures have been 

designed conventionally for no storm surge overflow and minor wave overtopping during a 

design storm.  Empirical formulas for wave overtopping rates are used for a preliminary design 

where EurOtop Manual (2007) recommends the latest formulas.  Physical model testing is 

normally conducted in a wave flume or basin for a detailed design.  Various numerical models 

have also been developed to predict detailed hydrodynamics that are difficult to measure even in 

a laboratory (Kobayashi and Otta 1987; Kobayashi 1999; van Gent 2001).  The latest numerical 

models for hydrodynamics are reviewed by Losada et al. (2008) and Neves et al. (2008).  

However, our improved predictive capabilities for the hydrodynamics have not really improved 

our predictive capability for damage progression partly because damage to a coastal structure is 

cumulative (Melby and Kobayashi 1998).  As a result, a performance or risk-based design of a 
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coastal structure relies on empirical formulas for damage (e.g., Kobayashi et al. 2003).  This 

practical difficulty is similar to that for sediment transport on beaches.  Alternatively, the 

computationally-efficient CSHORE calibrated with extensive data sets has been developed for 

the design of inclined structures with relatively small wave reflection.  Damage progression on 

the stone armor layer is predicted by modifying the sediment transport model.  The eventual goal 

is to predict the performance of an inclined structure located on a movable bottom. 

 

 

2.  History of CSHORE Development 

 

The history of the cross-shore model CSHORE is summarized to provide an overview of 

CSHORE and acknowledge a number of graduate students and visiting researchers who 

contributed to the development of CSHORE.  The present version of CSHORE includes the 

various capabilities added to the initial CSHORE developed in 1998.  The different stages of the 

CSHORE development are summarized in the following where the detail of each stage can be 

found in the listed publications.  The computer program of CSHORE2008 was documented by 

Kobayashi and  Farhadzadeh (2008) and updated in this report for CSHORE2009. 

 

The cross-shore model CSHORE was initially developed to predict the cross-shore 

transformation of irregular nonlinear waves using the time-averaged continuity, momentum and 

wave energy equations together with a non-Gaussian probability distribution of the free surface 

elevation.  However, empirical formulas of limited generality were required to parameterize the 

wave nonlinearity.  The present version of CSHORE is based on linear wave theory and the 

Gaussian probability distribution to reduce the degree of empiricism. 
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• Kobayashi, N., Herrman, M.N., Johnson, B.D., and Orzech, M.D. (1998).  “Probability 

distribution of surface elevation in surf and swash zones.”  J. Waterway, Port, Coastal and 

Ocean Eng., 124(3), 99-107. 

• Kobayashi, N., and Johnson, B.D. (1998).  “Computer program CSHORE for predicting 

cross-shore transformation of irregular breaking waves.”  Res. Rep. No. CACR-98-04, Center 

for Applied Coastal Research, Univ. of Delaware, Newark, Del. 

• Johnson, B.D., and Kobayashi, N. (1998).  “Nonlinear time-averaged model in surf and swash 

zones.”  Proc. 26th Coastal Eng. Conf., ASCE, 2785-2798. 

• Kearney, P.G., and Kobayashi, N. (2000).  “Time-averaged probabilistic model for irregular 

wave runup on coastal structures.”  Proc. 27th Coastal Eng. Conf., ASCE, 2004-2017. 

• Johnson, B.D., and Kobayashi, N. (2000).  “Free surface statistics and probabilities in surf 

zones on beaches.”  Proc. 27th Coastal Eng. Conf., ASCE, 1022-1035. 

 

The next stage of the CSHORE development was motivated by the need of a computationally-

efficient time-averaged model that can be used for the design of porous coastal structures.  The 

linear-wave version of the initial CSHORE was modified to account for the effects of a 

permeable layer for the case of normally incident waves.  The permeable version of CSHORE 

was called CSHOREP.  The impermeable and permeable versions of CSHORE have been 

merged in the present CSHORE in order to expand the range of practical applications.   

• Meigs, L.E., and Kobayashi, N. (2004).  “Time-averaged model for irregular breaking waves 

on porous structures and beaches.”  Res. Rep. No. CACR-04-02, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 
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• Meigs, L.E., Kobayashi, N., and Melby, J.A. (2004).  “Cobble beaches and revetments.”  

Proc. 29th Coastal Eng. Conf., World Scientific, 3865-3877. 

• de los Santos, F.J., and Kobayashi, N. (2005).  “Irregular wave setup and runup on cobble 

beaches and revetments.”  Res. Rep. No. CACR-05-06. Center for Applied Coastal Res., Univ. 

of Delaware, Newark, Del. 

• Ota, T., Kobayashi, N., and Kimura, A. (2006).  “Irregular wave transformation over 

deforming submerged structures.”  Proc. 30th Coastal Eng. Conf., World Scientific, 4945-

4956. 

• de los Santos, F.J., Kobayashi, N., and Losada, M. (2006).  “Irregular wave runup and 

overtopping on revetments and cobble beaches.”  Proc. 30th Coastal Eng. Conf., World 

Scientific, 4667-4679. 

•  de los Santos, F.J., and Kobayashi, N. (2006).  “Irregular wave seepage and overtopping of 

cobble beaches and revetments.”  Res. Rep. No. CACR-06-01, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Kobayashi, N., Meigs, L.E., Ota, T., and Melby, J.A. (2007).  “Irregular breaking wave 

transmission over submerged porous breakwaters.”  J. Waterway, Port, Coastal, Ocean Eng., 

133(2), 104-116. 

• Kobayashi, N., and de los Santos, F.J. (2007).  “Irregular wave seepage and overtopping of 

permeable slopes.”  J. Waterway, Port, Coastal, Ocean Eng., 133(4), 245-254. 

• Ota, T., Matsumi, Y., Kobayashi, N., and Kimura, A. (2007).  “Influence of damage 

progression on performance of rubble mound breakwaters.”  Proc. Coastal Structures’2007, 

Venice, Italy, 1806-1817. 
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• Kobayashi, N., de los Santos, F.J., and Kearney, P.G. (2008).  “Time-averaged probabilistic 

model for irregular wave runup on permeable slopes.”  J. Waterway, Port, Coastal, Ocean 

Eng., 134(2), 88-96. 

 

Concurrently, the impermeable version of CSHORE was extended to predict the cross-shore and 

longshore transport rates of suspended sand and bedload on beaches as a part of the MORPHOS 

project of the U.S. Army Engineer Research and Development Center.  MORPHOS is the 

world’s first attempt at developing an open-source, physics-based computer model of coastal 

storms and their impact that can be used by the broad coastal community.  A series of extensions 

were made in the following publications to make CSHORE more versatile and better verified. 

• Zhao, H., and Kobayashi, N. (2005).  “Suspended sand transport in surf zones on equilibrium 

beaches.”  Res. Rep. No. CACR-05-01, Center for Applied Coastal Res., Univ. of Delaware, 

Newark, Del. 

• Kobayashi, N., Zhao, H., and Tega, Y. (2005).  “Suspended sand transport in surf zone.”  J. 

Geophys. Res., 110, C12009, doi:10.1029/2004JC002853. 

• Agarwal, A., and Kobayashi, N. (2005).  “Time-averaged model for longshore current and 

sediment transport in surf and swash zones.”  Res. Rep. No. CACR-05-07, Center for Applied 

Coastal Res., Univ. of Delaware, Newark, Del. 

• Schmied, L., Kobayashi, N., Payo, A., and Puleo, J.A. (2006).  “Cross-shore sediment 

transport and beach profile change.”  Res. Rep. No. CACR-06-03, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Schmied, L.D., Kobayashi, N., Puleo, J.A., and Payo, A. (2006).  “Cross-shore suspended 

sand transport on beaches.”  Proc. 30th Coastal Eng. Conf., World Scientific, 2511-2523. 
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• Agarwal, A., Kobayashi, N., and Johnson, B.D. (2006). “Longshore suspended sediment 

transport in surf and swash zones.”  Proc. 30th Coastal Eng. Conf., World Scientific, 2498-

2510. 

• Payo, A., Kobayashi, N., and Kim, K.H. (2006).  “Beach nourishment strategies.”  Proc. 30th 

Coastal Eng. Conf., World Scientific, 4129-4140. 

• Kobayashi, N., Agarwal, A., and Johnson, B.D. (2007).  “Longshore current and sediment 

transport on beaches.”  J. Waterway, Port, Coastal, Ocean Eng., 133(4), 296-304. 

• Buck, M., Kobayashi, N., Payo, A., and Johnson, B.D. (2007).  “Experiments and numerical 

model for berm and dune erosion.”  Res. Rep. No. CACR-07-03, Center for Applied Coastal 

Res., Univ. of Delaware, Newark, Del. 

• Gencarelli, R., Johnson, B.D., Kobayashi, N. and Tomasicchio, G.R. (2007).  “Dune erosion 

and breaching.”  Proc. Coastal Structures’2007, Venice, Italy, 502-513. 

• Kobayashi, N., Payo, A., and Schmied, L. (2008).  “Cross-shore suspended sand and bedload 

transport on beaches.”  J. Geophys. Res., 113, C07001, doi:10.1029/2007JC004203. 

• Kobayashi, N., Buck, M., Payo, A., and Johnson, B.D. (2009).  “Berm and dune erosion 

during a storm.”  J. Waterway, Port, Coastal, Ocean Eng., 135(1), 1-10. 

• Kobayashi, N., Payo, A., and Johnson, B.D. (2009).  “Suspended sand and bedload transport 

on beaches.”  Handbook of Coastal and Ocean Engineering, World Scientific, Singapore, 

Chapter 28, 807-823. 

• Payo, A., Kobayashi, N., and Yamada, F. (2009).  “Suspended sand transport along pier 

depression.”  J. Waterway, Port, Coastal, Ocean Eng., 135(5), 245-249. 

• Buck, M., Kobayashi, N., Payo, A., and Johnson, B.D. (2008).  “Berm and dune erosion.”  

Proc. 31th Coastal Eng. Conf., World Scientific, 1749-1761. 
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• Gencarelli, R., Tomasicchio, G.R., Kobayashi, N., and Johnson, B.D. (2008).  “Beach profile 

evolution and dune erosion due to the impact of Hurricane Isabel.”  Proc. 31th Coastal Eng. 

Conf., World Scientific, 1697-1709. 

• Gencarelli, R., Tomasicchio, G.R., Kobayashi, N., and Johnson, B.D. (2008).  “Effects of 

Hurricane Isabel along the North Carolina coastline: Beach profile evolution and dune 

erosion.”  Proc. 3rd International Short Conf. on Applied Coastal Res., Lecce, Italy, 200-210.  

 

The following papers summarized the progress of the CSHORE development up to 2008. 

• Kobayashi, N. (2006).  “Time-averaged wave models for coastal structures and sediments.”  

Proc. 2nd International Short Course and Workshop on Coastal Processes and Port Eng., 

Cosenza, Italy, 61-75.  

• Kobayashi, N., and Farhadzadeh, A. (2008).  “Cross-shore numerical model CSHORE for 

waves, currents, sediment transport and beach profile evolution.”  Res. Rep. No. CACR-08-01, 

Center for Applied Coastal Res., Univ. of Delaware, Newark, Del. 

• Kobayashi, N. (2009).  “Efficient wave and current models for coastal structures and 

sediments.”  Nonlinear Wave Dynamics.  World Scientific, Singapore, 67-87. 

• Kobayashi, N., Figlus, J., and Buck, M. (2009).  “Beach nourishment and dune erosion.”  

Proc. 3rd Internal Short Conf. on Applied Coastal Res., Lecce, Italy, 71-98. 

 

The publications above were based on the earlier version of CSHORE limited to the wet zone 

below the mean water level.  In order to extend CSHORE to the zone which is intermittently wet 

and dry, laboratory experiments were conducted for wave overtopping and overflow on fixed 

levees.  The laboratory data was used for the development of a probabilistic model for the wet 
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and dry zone on an impermeable bottom.  This hydrodynamic model coupled with the sediment 

transport model in CSHORE has been used to predict wave overwash of dunes.  The 

hydrodynamic model has also been extended to the wet and dry zone on a permeable bottom for 

the prediction of wave overtopping of rubble mound structures.  This model coupled with the 

CSHORE bedload formula modified for stone has been shown to be capable of predicting the 

evolution of damaged stone armor layers.  The computer program of CSHORE2009 includes 

these capabilities added in 2009. 

• Farhadzadeh, A., Kobayashi, N., Melby, J.A., and Ricottilli, C. (2007).  “Experiments and 

numerical modeling of wave overtopping and overflow on dikes.”  Res. Rep. No. CACR-07-

02, Center for Applied Coastal Res., Univ. of Delaware, Newark, Del. 

• Kobayashi, N., Farhadzadeh, A., and Melby, J.A. (2007).  “Structures of storm surge disaster 

prevention.”  Proc. 4th International Workshop on Coastal Disaster Prevention, Yokohama, 

Japan, 41-49. 

• Farhadzadeh, A., Kobayashi, N., and Melby, J.A. (2008).  “Wave overtopping and overflow 

on inclined structures.”  Proc. 31st Coastal Eng. Conf., World Scientific, 2996-3008. 

• Kobayashi, N., Farhadzadeh, A., Melby, J.A., Johnson, B., and Gravens, M. (2010).  “Wave 

overtopping of levees and overwash of dunes.”  J. Coastal Research (in press). 

• Kobayashi, N., and Farhadzadeh, A. (2009).  “Dune erosion and overwash.”  Proc. Coastal 

Dynamics 2009, Tokyo, Japan, Paper No. 81. 

• Johnson, B., Gravens, M., Wamsley, T., and Kobayashi, N. (2009).  “A predictive model for 

beach profile evolution.”  Proc. Coastal Dynamics 2009, Tokyo, Japan, Paper No. 64. 
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• Johnson, B., Seymour, R., and Kobayashi, N. (2009).  “A profile evolution model including 

erosion and accretion.”  2009 National Conf., American Shore and Beach Preservation  

Association, St. Pete Beach, Florida. 

• Figlus, J., Kobayashi, N., Gralher, C., and Iranzo, V. (2009).  “Experimental and numerical 

study on transition from minor to major wave overwash of dunes.”  Res. Rep. No. CACR-09-

04, Center for Applied Coastal Res., Univ. of Delaware, Newark, Del. 

• Figlus, J., Kobayashi, N., Gralher, C., and Iranzo, V. (2009).  “Wave-induced overwash and 

destruction of sand dunes.”  32nd Coastal Eng. Conf., World Scientific, (submitted). 

• Figlus, J., Kobayashi, N., Gralher, C., and Iranzo, V. (2009).  “Wave overtopping and 

overwash of dunes.”  J. Waterway, Port, Coastal, Ocean Eng., (submitted). 

• Farhadzadeh, A., Kobayashi, N., and Melby, J.A. (2009).  “Wave overtopping and damage 

progression on rubble mound structures.”  Res. Rep. No. CACR-09-05, Center for Applied 

Coastal Res., Univ. of Delaware, Newark, Del. 

• Farhadzadeh, A., Kobayashi, N., and Melby, J.A. (2009).  “Evolution of damaged armor layer 

profile.”  32nd Coastal Eng. Conf., World Scientific, (submitted). 

• Hicks, B., Kobayashi, N., Puleo, J., and Farhadzadeh, A. (2009).  “Cross-shore gravel 

transport on beaches.”  32nd Coastal Eng. Conf., World Scientific, (submitted). 

• Kobayashi, N., Farhadzadeh, A., and Melby, J.A. (2009).  “Wave action and damage on stone 

structures.”  J. Waterway, Port, Coastal, Ocean Eng., (submitted). 

 

In addition, CSHORE will be extended to predict the long-term (seasonal and yearly) cross-shore 

and longshore sediment transport rates on natural and nourished beaches.  The field data required 
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for the calibration and verification for the long-term morphological model CSHORE has been 

obtained and analyzed in the following publications: 

• Figlus, J., and Kobayashi, N. (2007).  “Seasonal and yearly profile changes of Delaware 

beaches.”  Res. Rep. No. CACR-07-01, Center for Applied Coastal Res., Univ. of Delaware, 

Newark, Del. 

• Figlus, J., and Kobayashi, N. (2008).  “Inverse estimation of sand transport rates on nourished 

Delaware beaches.”  J. Waterway, Port, Coastal, Ocean Eng., 134(4), 218-225. 

• Figlus, J., and Kobayashi, N. (2008).  “Two-line model for inverse estimation of cross-shore 

and longshore transport rates on nourished beaches.”  31st Coastal Eng. Conf., World 

Scientific, 2545-2556. 

 

 

3.  Wave and Current Models 

 

Cross-shore sediment transport on beaches has been investigated extensively (e.g., Kriebel and 

Dean 1985; van Rijn et al. 2003) but we still cannot predict beach profile evolution accurately.  

In order to improve our predictive capabilities, sediment transport models have become more 

sophisticated but less transparent.  For example, Thornton et al. (1996) and Gallagher et al. 

(1998) used the energetics-based total load model of Bailard (1981) to explain the offshore 

movement of a bar at Duck, North Carolina during storms.  The onshore bar migration on the 

same beach was predicted by both Hoefel and Elgar (2003), using the skewed acceleration effect 

on bedload, and Henderson et al. (2004), using a suspended sediment model.  The roles of 

bedload and suspended load are not clear at present.  Kobayashi et al. (2008a) made an attempt 

to synthesize and simplify existing cross-shore sediment transport models with the aim of 

developing a simple and robust model that is suited for engineering applications including the 
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berm and dune erosion.  This model has been extended to predict the cross-shore and longshore 

transport rates of bedload and suspended load under the combined wave and current action 

(Kobayashi et al. 2007a; 2009b).   

 

Sediment transport on beaches is caused by the combined action of waves and currents.  The 

hydrodynamic input required for a sediment transport model depends on whether the sediment 

transport model is time-dependent (phase-resolving) or time-averaged over a number of waves.  

A time-dependent sediment transport model such as that by Kobayashi and Johnson (2001) is 

physically appealing because it predicts intense but intermittent sand suspension under irregular 

breaking waves (Kobayashi and Tega 2002).  However, the time-dependent model requires 

considerable computation time and is not necessarily more accurate in predicting slow 

morphological changes than the corresponding time-averaged model presented in the following.  

Horizontally two-dimensional wave and current models are presented first before the cross-shore 

model CSHORE based on the assumption of alongshore uniformity. 

 

Fig. 1 shows obliquely incident irregular waves on an essentially straight shoreline where the 

cross-shore coordinate x is positive onshore and the longshore coordinate y is positive in the 

downwave direction.  The beach is assumed to be impermeable.  The depth-averaged cross-shore 

and longshore velocities are denoted by U and V, respectively.  Incident waves are assumed to be 

unidirectional with θ  = incident angle relative to the shore normal.  The height and period of the 

irregular waves are represented by the root-mean-square wave height Hrms and the representative 

wave period, which is taken as the spectral peak period Tp, specified at the seaward boundary 

located at x = 0.  The location of the seaward boundary is normally taken to be outside the surf 
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zone so that wave set-down or setup is very small at x=0.  The incident wave angle θ  at x=0 is 

assumed to be in the range of |θ | < 80° to ensure that the incident waves propagate landward.  

The wind speed and direction at the elevation of 10 m above the sea surface are denoted by W10 

and θw, respectively. 

 

 

Fig. 1.  Definition sketch for incident irregular waves and wind on beach. 
 

 

The mean water depth h  is given by 

 ( )b
h S zη= + −  (1) 

where η  = wave setup above the still water level (SWL); and S = storm tide above the datum z = 

0 which is assumed to be uniform in the computation domain and is specified as input at x=0.  

Linear wave and current theory for wave refraction (e.g., Phillips 1977; Mei 1989; Dalrymple 

1988) is used to predict the spatial variations of Hrms and θ.  The dispersion relation for linear 

waves is expressed as 
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 ( ) ( )2 tanh ; cos sin /
p x y

kg kh k Q Q hω ω ω θ θ= = + +  (2) 

where ω = intrinsic angular frequency; k = wave number; g = gravitational acceleration; h  = 

mean water depth with the overbar indicating time-averaging; ωp = absolute angular frequency 

given by 2 /
p p

Tω π= ; Qx and Qy = time-averaged volume flux per unit width in the x and y 

directions, respectively, and θ = incident wave angle.  Eq. (2) can be solved iteratively to obtain 

k and ω for known , , ,p xh Qω θ   and 
y

Q .  The phase velocity C and the group velocity Cg are 

given by 

 

( )
1 2

/ ; ; 1
2 sinh 2

g

kh
C k C nC n

kh
ω

 
 = = = +
 
 

 (3) 

The wave angle θ is computed using the irrotationality of the wave number 

 ( ) ( )sin sin 0k k
x y

θ θ
∂ ∂

− =
∂ ∂

 (4) 

The root-mean-square wave height Hrms defined as 8rmsH ησ=  with ησ = standard deviation of 

the free surface elevation η which is computed using the wave action equation 

 cos sin
y B fx

g g

Q D DE Q E
C C

x h y h
θ θ

ω ω ω

  +    ∂ ∂
+ + + =−     

∂ ∂      
 (5) 

with 

 2 21

8
rms

E g gHηρ σ ρ= =  (6) 

where E = specific wave energy; ρ = fluid density; and DB and Df = wave energy dissipation rate 

per unit horizontal area due to wave breaking and bottom friction, respectively.  The formulas for 

DB and Df are presented later in relation to the cross-shore model CSHORE. 
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The time-averaged volume fluxes Qx and Qy in Eq. (2) are expressed as 

  

 ;x wx y wyQ hU Q Q hV Q= + = +  (7) 

with 

 

2 2cos sin
cos ; sin

wx r wy r

g g
Q q Q q

C C

η ησ θ σ θ
θ θ= + = +  (8) 

where U andV  = time-averaged, depth-averaged velocities in the x and y directions; Qwx and Qwy 

= wave-induced volume fluxes in the x and y directions; ( )2 /g Cση  = volume flux due to linear 

waves propagating in the direction of θ ; and qr = volume flux of a roller on the front of a 

breaking wave.  The roller volume flux qr is estimated using the roller energy equation as 

explained by Kobayashi et al. (2005,2007a) 

 

 ( ) ( )2 2cos sin
r r B r

C q C q D D
x y

ρ θ ρ θ
∂ ∂

+ = −
∂ ∂

 (9) 

with 

 ( ); 0.1 0.1r r r r bD g q Sρ β β= = + ≥  (10) 

 cos sinb b
b

z z
S

x y
θ θ

∂ ∂
= +

∂ ∂
 (11) 

where Dr = roller dissipation rate; βr = wave-front slope; Sb = bottom slope in the direction of 

wave propagation; and zb =  bottom elevation relative to the datum z = 0 with z = vertical 

coordinate taken to be positive upward.  The wave front slope βr is assumed to be 0.1 unless it is 

increased by the positive bottom slope Sb.   
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The mean water depth h  and the current velocities U  and V  are computed using the time-

averaged continuity and momentum equations (Phillips 1977; Svendsen et al. 2002). 

 

 ( ) ( ) 0
x y

Q Q
x y

∂ ∂
+ =

∂ ∂
 (12) 

  

 
2

x yx bx sx
wx

Q QQ
gh

x h y h x

η τ τ
τ

ρ ρ

   ∂ ∂ ∂
+ + + = +   

∂ ∂ ∂  
 (13) 

  

 

2

x y y by sy

wy

Q Q Q
gh

x h y h y

τ τη
τ

ρ ρ

  ∂ ∂ ∂
+ + + = +    ∂ ∂ ∂   

 (14) 

with 

 
2

xy wx wyxx wx
wx

S Q QS Q

x h y h
τ

ρ ρ

   ∂ ∂
= − − − −      ∂ ∂   

 (15) 

 

2

xy wx wy yy wy

wy

S Q Q S Q

x h y h
τ

ρ ρ

   ∂ ∂
= − − − −      ∂ ∂   

 (16) 

 ( ) 2 1
cos ;

2
xx r r r

S nE M E n M Cqθ ρ
 

= + + − = 
 

 (17) 

 ( ) ( ) 2 1
cos sin ; sin

2
xy r yy r

S nE M S nE M E nθ θ θ
 

= + = + + − 
 

 (18) 

where τbx and τby = bottom shear stresses in the x and y directions; τsx and τsy = wind stresses on 

the sea surface in the x and y directions; and Sxx, Sxy and Syy = radiation stresses including the 

momentum flux Mr of a roller propagating with the phase speed C.  It is noted that the terms 



 20

2
,Q Q Q

wx wx wy
 and 2

Q
wy

 in Eqs. (15) and (16) included by Phillips (1977) are of 4-th order in terms 

of the wave height and normally neglected.  The present circulation model based on Eqs. (12) – 

(18) is a simplified version of SHORECIRC (Svendsen et al. 2002) for irregular waves where 

SHORECIRC assumes monochromatic waves.  The formulas for τbx, τby, τsx and τsy are presented 

later in relation to the cross-shore model CSHORE. 

 

A horizontally two-dimensional model C2SHORE has been developed in the MORPHOS project 

(Shi et al. 2008).  The directional spectral wave model STWAVE (Smith et al. 2001) is used to 

predict the wave transformation.  The wave-induced fluxes Qwx and Qwy and the radiation stresses 

Sxx, Sxy and Syy are computed from the predicted directional wave spectra.  The roller effects 

included in Eqs. (8), (17) and (18) are neglected.  The circulation model is based on Eqs. (12)– 

(16) with the formulas for τbx, τby, τsx and τsy used in CSHORE.  The wave and circulation models 

are coupled and run iteratively for several times.  The wave field is computed to estimate τwx and 

τwy given by Eqs. (15) and (16) for the circulation model which computes the wave setup and 

wave-induced currents.  An efficient finite difference method is used to solve Eqs. (12) – (14) 

and reduce the computation time considerably (Shi et al. 2007).  The iteration between the wave 

and circulation models is necessary in the region near and landward of the still water shoreline 

where wave setup determines the mean water depth h  for the wave model.  The wave and 

current models in Section 3 are limited to the wet zone below the mean water level.  Shi et al. 

(2008) compared C2SHORE with the morphological change data at the U.S. Army Corps of 

Engineers Field Research Facility (FRF) during Hurricane Isabel and found the need to include 

the effects of the FRF piling. 
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4.  Combined Wave and Current Model CSHORE in Wet Zone 
 

The cross-shore model CSHORE assumes alongshore uniformity but computes the wave and 

current fields simultaneously.  The depth-integrated continuity equation of water given by Eq. 

(12) requires that the cross-shore volume flux Qx is constant and equal to the wave overtopping 

rate qo at the landward end of the computation domain.  Eqs. (7) and (8) yield 

  

 

2

cos cos
x r o

g
Q hU q q

C

ησ
θ θ= + + =  (19) 

 

2

sin sin
y r

g
Q hV q

C

ησ
θ θ= + +  (20) 

where h  = mean water depth; U  = mean cross-shore velocity; which is negative and offshore 

because cos 0θ >  if  0
o

q =  (no wave overtopping); g = gravitational acceleration; ση  = 

standard deviation of the free surface elevation η ; C = linear wave phase velocity in the mean 

water depth h  corresponding to the spectral peak period Tp; and qr = volume flux of a roller on 

the front of a breaking wave.  If the incident wave angle θ  is small, Eq. (20) can be 

approximated by yQ hV≃  for most applications.  

 

For the case of alongshore uniformity, Eq. (4) reduces to Snell’s law which is used to obtain the 

wave direction θ 

 sin constantk θ =  (21) 

The constant value is obtained from the values of θ, h  and Tp specified at the seaward boundary 

x = 0 located outside the surf zone where ω can be approximated by ωp in Eq. (2).  Reflected 

waves are neglected in this model. 
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The cross-shore and longshore momentum equations (13) and (14) are simplified as 

 

 
2

x
xx bx sx

d Q d
S gh

dx h dx

η
ρ ρ τ τ

 
+ = − − + 

 
 (22) 

 
x y

xy by sy

Q Qd
S

dx h
ρ τ τ

 
+ = − + 

 
 (23) 

where Sxx = cross-shore radiation stress; ρ = water density; τbx = cross-shore bottom stress; τsx = 

cross-shore wind stress on the sea surface; Sxy = shear component of the radiation stress; τby = 

longshore bottom stress; and τsy = longshore wind stress on the sea surface.  The wind shear 

stresses may not be negligible especially outside surf zones on natural beaches (Lentz et al. 

1999).  Linear wave theory for progressive waves is used to estimate Sxx and Sxy as in Eqs. (17) 

and (18) 

 

 ( ) ( )2 1
cos ; cos sin

2
xx r xy r

S nE M E n S nE Mθ θ θ
 

= + + − = + 
 

 (24) 

with 

 2/ ; ;g r rn C C E g M Cqηρ σ ρ= = =  (25) 

where Cg = linear wave group velocity; E = specific wave energy with the root-mean-square 

wave height defined as Hrms = 8 ση; and Mr = momentum flux of a roller propagating with the 

phase velocity C.  It is noted that the equations used in CSHORE are presented again for clarity. 

 

The time-averaged bottom shear stresses in Eqs. (22) and (23) are written as 
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 ( )
0.5

2 21 1
; ;

2 2
bx b a by b a a

f UU f VU U U Vτ ρ τ ρ= = = +  (26) 

where U = depth-averaged cross-shore velocity; V = depth-averaged longshore velocity; fb = 

bottom friction factor; and the overbar indicates time averaging.  The bottom friction factor fb is 

of the order of 0.01 on sand beaches but should be calibrated using longshore current data 

because of the sensitivity of longshore currents to fb.  The equivalency of the time and 

probabilistic averaging is assumed to express τbx and τby in terms of the mean and standard 

deviation of the depth-averaged velocities U and V expressed as 

 ( )
0.5

2 2; ; ;
T U T V a T a a U V

U F V F U F F F Fσ σ σ= = = = +  (27) 

with 

 * * * *cos ; sin ; ;
U V

T T

U V
F U r F V r U Vθ θ

σ σ
= + = + = =  (28) 

where U  and V  = depth-averaged cross-shore and longshore currents; σT  = standard deviation 

of the oscillatory (assumed Gaussian) depth-averaged velocity UT with zero mean; and r = 

Gaussian variable defined as r = UT/σT whose probability density function is given by 

 ( )
21

exp
2 2

r
f r

π

 
= − 

 
 (29) 

Linear progressive wave theory is used locally to express UT in terms of the oscillatory free 

surface elevation ( )η η−  

 ( )T

C
U

h
η η= −  (30) 

which yields the standard deviation σT of the oscillatory velocity UT 
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 * *; /T C hησ σ σ σ= =  (31) 

It is noted that that * /
T

U U σ=  and * /
T

V V σ=  are of the order of unity or less.  The standard 

deviations of U and V are given by 

 cos ; sinU T V Tσ σ θ σ σ θ= =  (32) 

where cos 0θ >  but sinθ  can be negative.  Substitution of Eq. (27) into Eq. (26) yields 

 

 2 21 1
;

2 2
bx b T bx by b T by

f G f Gτ ρ σ τ ρ σ= =  (33) 

with 

 ( )( ) ;
bx U a by V a

G F F f r dr G F F f r dr

∞ ∞

−∞ −∞

= =∫ ∫  (34) 

which must be integrated numerically. 

 

The wind shear stress in Eqs. (22) and (23) are expressed as 

 

 2 2

10 10cos ; sinsx a D w sy a D wC W C Wτ ρ θ τ ρ θ= =  (35) 

where ρa = air density (ρa ≃  1.225 kg/m
3
); CD = drag coefficient, W10 = 10-m wind speed; and θw 

= wind direction defined in Fig. 1.  The formula by Large and Pond (1981) is used to estimate CD 

where CD = 0.0012 for W10 < 11 m/s and CD = (0.00049 + 0.000065 W10 ) for W10 ≥  11 m/s.  It is 

noted that the measured values of CD during tropical cyclones by Powell et al. (2003) indicated 

no increase of CD with the increase of W10 much above 25 m/s.  In short, available data is 

insufficient to estimate CD for extreme wind conditions. 
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The wave action equation (5) for the case of alongshore uniformity becomes 

 

 cos
B fx

g

D Dd E Q
C

dx h
θ

ω ω

+  
+ = −  

  
 (36) 

which reduces to the wave energy equation if ω is constant and Qx=0. 

 ; cosx
B f x g

dF
D D F EC

dx
θ= − − =  (37) 

where Fx = cross-shore energy flux based on linear progressive wave theory; and DB and Df = 

energy dissipation rates due to wave breaking and bottom friction, respectively.   

 

The energy dissipation rate DB due to wave breaking in Eq. (36) is estimated using the formula 

by Battjes and Stive (1985), which was modified by Kobayashi et al. (2005) to account for the 

local bottom slope and to extend the computation to the lower swash zone.  The modified 

formula is expressed as 

 

2
2 1

; ;
4

0.88 2
tanh ; 1

0.88 3

s B rms
B

m

b
m s

ga QH Q H
D

T nQ H

kh S
H a

k kh

ρ

γ π

 −
= =  

 
 

 
= = ≥ 

 

ℓ

 (38) 

 

where as = slope effect parameter; Q = fraction of breaking waves; HB = breaker height used to 

estimate DB; T = intrinsic wave period given by T = 2π/ω with ω obtained using Eq. (2); 

8rmsH ησ=  = local root-mean-square wave height; Hm = local depth-limited wave height; k = 

wave number; h  = mean water depth including wave setup; γ = empirical breaker ratio 
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parameter; and Sb = local bottom slope given by Eq. (11).  The parameter as is the ratio between 

the wave length (2π/k) and the horizontal length (3 h /Sb) imposed by the small depth and 

relatively steep slope where the lower limit of as = 1 corresponds to the formula by Battjes and 

Stive (1985) who also assumed HB = Hm.  The fraction Q is zero for no wave breaking and unity 

when all waves break.  The requirement of 0 1Q≤ ≤  implies 
rms m

H H≤  but 
rms

H  can become 

larger than 
m

H  in very shallow water.  When Hrms > Hm,  use is made of Q = 1 and HB = Hrms.  

In addition, the upper limit of * / hησ σ=  is imposed as * 1σ ≤  in very shallow water (Kobayashi 

et al. 1998).  The breaker ratio parameter γ in Eq. (38) is typically in the range of γ = 0.5 – 1.0 

(Kobayashi et al. 2007a) but should be calibrated to obtain a good agreement with the measured 

cross-shore variation of ση if such data is available.  An option is provided in CSHORE2009 to 

estimate γ  using the empirical formula developed by Apotsos et al. (2008) using field data. 

 

On the other hand, the energy dissipation rate Df due to bottom friction in Eq. (36) is expressed 

as 

 31

2
f b a

D f Uρ=  (39) 

Substitution of Ua given in Eq. (27) into Eq. (39) yields 

 ( )3 31
;

2
f b T f f a

D f G G F f r drρ σ
∞

−∞

= = ∫  (40) 

where f(r) is given by Eq. (29). 

 

The energy equation for the roller given by Eq. (9) reduces to that used by Ruessink et al. (2001) 

for the case of alongshore uniformity 
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 ( )2 cos ;
r B r r r r

d
C q D D D g q

dx
ρ θ ρ β= − =  (41) 

where the roller dissipation rate Dr is assumed to equal the rate of work to maintain the roller on 

the wave-front slope βr of the order of 0.1.  Use is made of the empirical formula given by Eq. 

(10) proposed by Kobayashi et al. (2005) who included the local bottom slope effect.  If the 

roller is neglected, qr = 0 and Eq. (41) yields Dr = DB.  The roller effect improves the agreement 

for the longshore current (Kobayashi et al. 2007a). 

 

Eqs. (19) – (41) are the same as those used by Kobayashi et al. (2007a) who assumed Qx = qo = 

0 in Eq. (19) and neglected the wind shear stresses in Eqs. (22) and (23), and used linear 

shallow-water wave theory with C = (g h )
0.5

 in Eq. (30).  Substitution of Eqs. (31) and (32) into 

Eq. (19) yields the following equation of the mean cross-shore current: 

 *
2 2

1 r x
U

gh Cq Q
U

C g hη

σ σ
σ

 
 = − + +
 
 

 (42) 

The landward-marching computation starting from x = 0 outside the surf zone is the same as that 

of Kobayashi et al. (2007a).   

 

Approximate analytical equations of Gbx, Gby and Gf given by Eqs. (34) and (40) are obtained by 

Kobayashi (2009a) to reduce the computation time and improve the numerical stability.  The 

function Fa given in Eq. (27) with Eq. (28) is rewritten as 

 ( )
0.5

2 2

a m m
F r r F = − +

 
 (43) 

with 
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 ( )* * * *cos sin ; cos sinm mr U V F V Uθ θ θ θ= − + = −  (44) 

Eq. (43) is approximated as 

 ( ) for 0a m mF r r F r= − + ≥  

 ( ) for 0a m mF r r F r= − − + <  (45) 

Substituting Eq. (45) into Eqs. (34) and (40) and integrating the resulting equations analytically, 

we obtain approximate expressions for Gbx, Gby and Gf  

 ( )* *

2
cos

bx m m
G U r U Fθ

π
= − +  (46) 

 ( )* *

2
sin

by m m
G V r V Fθ

π
= − +  (47) 

 ( ) ( )2 2 2 2 2

* * * *

2 2
2 1 2

f m m
G U V F U V r

π π
= + + + + + +  (48) 

which depends on sinθ (cosθ > 0 assumed), rm and Fm where Eq. (44) yields *U  = − (rm cos θ + 

Fm sin θ) and *V = (Fm cos θ  −  rm sin θ). 

 

For the case of normally incident waves with no wind, sin θ  = 0 and 
*

V  = 0.  Eqs. (46) – (48) 

yield Gbx = 1.6 
*

U , Gby = 0, and Gf = (1.6 + 2.4 2

*U ).  For this case, Eq. (23) requires τby = 0 for 

Qx = 0 (no wave overtopping) and Eq. (33)  yields Gby = 0.  As a result, Eq. (47) is exact.  For sin 

θ = 0 and *V  = 0, Gbx and Gf given by Eqs. (34) and (40) can be integrated analytically as 

presented by Kobayashi et al. (2007b) who approximated the analytical expressions of Gbx and Gf 

as Gbx = 1.64 *U  and Gf = (1.6 + 2.6 2

*U ).  These approximate equations are very similar to the 

above equations obtained from Eqs. (46) and (48).  For the case of |sin θ |≪ 1 and | *U |≪ | *V  |, 
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Eq. (47) can be approximated as Gby =  *V  (0.8 + | *V |).  Using field data and probabilistic 

analyses, Feddersen et al. (2000) obtained Gby = *V  (1.16
2
 + 2

*V )
0.5

.  The difference between 

these two approximate equations for Gby is less than 20% for | *V | < 1.4, which is typically 

satisfied. 

 

Kobayashi et al. (2009a) compared the approximate values of Gbx, Gby and Gf given by Eqs. (46) 

– (48) with the exact values of Gbx, Gby and Gf obtained by the numerical integration of Eqs. (34) 

and (40).  The percentage error was typically about 10% and always less than 35% for the ranges 

of |sin θ | < 1, | rm | < 1 and |Fm |< 1.  This error is probably less than the uncertainty of the 

bottom friction factor fb.  

 

5.  Sediment Transport Model in Wet Zone 
 

The combined wave and current model CSHORE predicts the spatial variations of the 

hydrodynamic variables used in the following sediment transport model for given beach profile, 

water level and seaward wave conditions at x = 0.  The bottom sediment is assumed to be 

uniform and characterized by d50 = median diameter; wf = sediment fall velocity; and s = 

sediment specific gravity.  The sediment transport model developed for CSHORE is modified 

slightly in the following for the horizontally two-dimensional model C2SHORE. 

 

First, the spatial variation of the degree of sediment movement is estimated using the critical 

Shields parameter ψc (Madsen and Grant 1976) which is taken as ψc = 0.05.  The instantaneous 

bottom shear stress τ′b is assumed to be given by τ′b = 0.5 ρ fb U
2
a with Ua given in Eq. (26).  The 

sediment movement is assumed to occur when τ′b exceeds the critical shear stress, ρg(s−1)d50 ψc.  
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The probability Pb of sediment movement can be shown to be the same as the probability of 

( ) ( )2 2 2 2

m b b m
r r F R F− > = −  where Rb = [2 g (s−1) d50 ψc fb

-1
]

0.5
/σT and rm and Fm are defined in 

Eq. (44).  For the Gaussian variable r given by Eq. (29), Pb is given by  

 21 1
for 0

2 2 2 2

b m b m
b b

F r F r
P erfc erfc F

   − +
= + >   

   
 (49) 

and Pb = 1 for 2

b
F  ≤  0 where erfc is the complementary error function.  The value of Pb 

computed from x = 0 located outside the surf zone increases landward and fluctuates in the surf 

and swash zones, depending on the presence of a bar or a terrace that increases the local fluid 

velocity. 

 

Second, the spatial variation of the degree of sediment suspension is estimated using the 

experimental finding of Kobayashi et al. (2005) who showed that the turbulent velocities 

measured in the vicinity of the bottom were related to the energy dissipation rate due to bottom 

friction.  Representing the magnitude of the instantaneous turbulent velocity by (D′f /ρ)
1/3

 with 

D′f = 0.5 ρfb 
3

a
U  in light of Eq. (39), the probability Ps of sediment suspension is assumed to be 

the same as the probability of (D′f /ρ)
1/3

 exceeding the sediment fall velocity wf.  The probability 

Ps is then equal to the probability of  ( ) ( )2 2 2 2

m s s m
r r F R F− > = −  with Rs =[(2/fb)

1/3
wf /σT ] and is 

given by 

 

 21 1
for 0

2 2 2 2

s m s m
s s

F r F r
P erfc erfc F

   − +
= + >   

   
 (50) 
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and Ps = 1 for 2

s
F  ≤  0.  If Ps > Pb, use is made of Ps=Pb assuming that sediment suspension 

occurs only when sediment movement occurs.  Fine sands on beaches tend to be suspended once 

their movement is initiated. 

 

Third, the suspended sediment volume Vs per unit horizontal bottom area is estimated by 

modifying the sediment suspension model by Kobayashi and  Johnson (2001) 

 
( )

( ) ( )
0.5 0.5

2 21 1 ; ;
1

B r f f b b
s s bx by bx by

f

e D e D z z
V P S S S S

g s w x yρ

+ ∂ ∂
= + + = =

− ∂ ∂
 (51) 

where Sbx = cross-shore bottom slope; Sby = longshore bottom slope; and eB and ef = suspension 

efficiencies for the energy dissipation rates Dr and Df due to wave breaking and bottom friction, 

respectively.  Use has been made of eB = 0.005 and ef = 0.01 as typical values in the computation 

of berm and dune erosion but the value of eB is uncertain and should be calibrated if Vs is 

measured (Kobayashi et al. 2007a).  The sediment suspension probability Ps is added in Eq. (51) 

to ensure Vs = 0 if Ps = 0.  The term involving Sbx and Sby is the actual bottom area per unit 

horizontal bottom area and essentially unity except for very steep slopes.  For the case of 

alongshore uniformity, Sby = 0.  The cross-shore and longshore suspended sediment transport 

rates qsx and qsy are expressed as 

 ( )
0.5

; ; / tansx x s sy s x bxq a UV q VV a a S aφ = = = + ≥
 

 (52) 

where a = empirical suspended load parameter and φ = angle of internal friction of the sediment 

with tanφ = 0.63 for sand (Bailard 1981).  The parameter a accounts for the onshore suspended 

sediment transport due to the positive correlation between the time-varying cross-shore velocity 

and suspended sediment concentration.  The value of a increases to unity as the positive 

correlation decreases to zero.  For the three small-scale equilibrium profile tests conducted by 
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Kobayashi et al. (2005), a was of the order of 0.2.  The effect of the cross-shore bottom slope on 

ax was included by Kobayashi et al. (2009b) to increase berm and dune erosion.  For Sbx ≤ 0, ax = 

a.  The cross-shore suspended sediment transport rate qsx is negative (offshore) because the 

return (undertow) current U  is negative (offshore).  On the other hand, the longshore suspended 

sediment transport rate qsy in Eq. (52) neglects the correlation between the time-varying 

longshore velocity and suspended sediment concentration, which appears to be very small if the 

longshore current V  is sufficiently large.  Payo et al. (2009) verified Eq. (52) using velocities 

and sand concentrations measured along 20 transects at the Field Research Facility at Duck, 

North Carolina during a storm in 1997. 

 

Fourth, the formulas for the cross-shore and longshore bedload transport rates 
bx

q  and 
by

q  are 

devised somewhat intuitively because bedload in the surf zone has never been measured.  The 

time-averaged rates 
bx

q  and 
by

q  are tentatively expressed as 

 ( ) ( )2 2 2 2;
bx b by b

q B U V U q B U V V= + = +  (53) 

where Bb = empirical parameter.  Eq. (53) may be regarded as a quasi-steady application of the 

formula of Meyer-Peter and Mueller (e.g., Ribberink 1998).  Substitution of U and V given in 

Eq. (27) with Eqs. (28) and (29) into Eq. (53) yields 

 ( )3 2

* * * 2 sin
bx b T m

q B b U V Fσ θ= + +  (54) 

 ( )3 2 2

* * *1 2 sin
by b T m

q B V U V rσ θ = + + −   (55) 

where ( )3

* * *3b U U= +  and Fm and rm are defined in Eq. (44). 
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Eqs. (54) and (55) yield 3

*bx T
q b Bσ=  and 

by
q  = 0 for normally incident waves with sinθ = 0 and 

*V  = 0.  The expressions of Bb and *b  are obtained by requiring that 3

*bx T
q b Bσ=  reduces to the 

onshore bedload formula proposed by Kobayashi et al. (2008a) for normally incident waves, 

which synthesized existing data and simple formulas.  The proposed formulas are written as 

 
( )

( ) ( )3 2

* *1 2 sin
1

b
bx T m s bx

bP
q U V F G S

g s
σ θ= + +

−
 (56) 

 
( )

( ) ( )3 2 2

* * *1 2 sin
1

b
by T m s by

bP
q V U V r G S

g s
σ θ = + + − 

−
 (57) 

where b = empirical bedload parameter; and Gs = bottom slope function.  The sediment 

movement probability Pb given in Eq. (49) accounts for the initiation of sediment movement.  It 

is noted that *b  = 1 in Eq. (56) to compensate for the limitations of Eq. (53) and the Gaussian 

distribution of the horizontal velocity used in Eqs. (28) and (29) as discussed by Kobayashi et al. 

(2008a).  They calibrated b = 0.002 using the 20 water tunnel tests of Ribberink and Al-Salem 

(1994), the 4 large-scale wave flume tests of Dohmen-Janssen and Hanes (2002), and the 24 

sheet flow tests by Dohmen-Janssen et al. (2002).  Furthermore, this simple bedload formula is 

consistent with the sheet flow model for onshore bar migration by Trowbridge and Young (1989) 

and the energetics-based bedload formula for steady flow by Bagnolds (1966) if the steady flow 

formula is applied in the time-averaged manner.  The onshore bedload transport predicted by Eq. 

(56) is consistent with the field observations of onshore ripple migration by Becker et al. (2007) 

and Masselink et al. (2007).  The offshore suspended sediment transport predicted by Eq. (52) is 

consistent with the field measurement during a storm by Madsen et al. (1994).  The condition of 

( ) 0bx sxq q+ =  for an equilibrium profile along with additional assumptions can be shown to 

yield the equilibrium profile popularized by Dean (1991). 
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The bottom slope function Gs(Sbx) was introduced by Kobayashi et al. (2008a) to account for the 

effect of the steep cross-shore slope Sbx on the bedload transport rate and is expressed as 

 ( ) ( )tan / tan for tan 0s bx bx bxG S S Sφ φ φ= + − < <  (58) 

 ( ) ( ) ( )tan 2 / tan for 0<S tans bx bx bx bxG S S Sφ φ φ= − − <  (59) 

where Gs = 1 for Sbx = 0.  Eq. (58) corresponds to the functional form of Gs used by Bagnold 

(1966) for steady stream flow on a downward slope with Sbx < 0 where the downward slope 

increases qbx.  Eq. (59) ensures that Gs approaches negative infinity as the upward slope Sbx 

approaches tan φ.  Eqs. (58) and (59) reduce to Gs = (1 − Sbx / tan φ) for |Sbx | ≪  tan φ.  Eq. (56) 

with Gs given by Eqs. (58) and (59) implies that the bedload transport rate 
bx

q  is positive 

(onshore) for Sbx < (tan φ)/2 and negative (offshore) for Sbx > (tan φ) /2.  Use is made of |Gs |<Gm 

= 10 to avoid an infinite value in the computation.  The computed profile change is not very 

sensitive to the assumed value of Gm because the beach profile changes in such a way to reduce a 

very steep slope except in the region of scarping (e.g., Seymour et al. 2005).  The effect of the 

longshore bottom slope Sby is included in Eq. (57) using the same bottom slope function Gs(Sby) 

but has never been validated for lack of suitable data. 

 

The landward marching computation of the time-averaged model in the wet zone ends at the 

cross-shore location x = xr where the mean water depth h  is less than 1 cm.  No reliable data 

exists for suspended sand and bedload transport rates in the zone which is wet and dry 

intermittently.  In the absence of wave overtopping [qo = 0 in Eq. (19)], the following simple 

procedure was proposed by Kobayashi et al. (2008a) to deal with the zone with the bottom slope 

Sbx >  tan φ.  The cross-shore total sediment transport rate qx = (qsx + qbx) at x = xr  is denoted by 
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qxr.  If qxr is negative (offshore), qx is extrapolated linearly to estimate qx on the scarped face with 

Sbx > tan φ 

 ( ) ( )/ forx xr e e r r eq q x x x x x x x= − − < <  (60) 

where xe = landward limit of the scarping zone with Sbx > tan φ.  The extrapolated qx is in the 

range of qxr  ≤  qx ≤  0  and the scarping zone is eroded due to the offshore sediment transport.  

This simple procedure is effective for a high and wide dune, that is typical in the Netherlands 

(e.g., van Gent et al. 2006), but does not allow onshore sediment transport due to overwash.  The 

model for the wet and dry zone in Section 8 has been developed to predict wave overtopping and 

overwash of dunes. 

 

Finally, the beach profile change is computed using the continuity equation of bottom sediment 

 ( )1 0
yb x

p

qz q
n

t x y

∂∂ ∂
− + + =

∂ ∂ ∂
 (61) 

where np = porosity of the bottom sediment which is normally taken as np = 0.4; t = slow 

morphological time for the change of the bottom elevation zb; and qy = (qsy + qby) = longshore 

total sediment transport rate.  For the case of alongshore uniformity, the third term in Eq. (61) is 

zero.  Eq. (61) is solved using an explicit Lax-Wendroff numerical scheme (e.g., Nairn and 

Southgate 1993) to obtain the bottom elevation at the next time level.  This computation 

procedure is repeated starting from the initial bottom profile until the end of a profile evolution 

test.  The computation time is of the order of 10
-3

 of the test duration. 
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6.  Permeable Layer Model in Wet Zone 
 

The combined wave and current model CSHORE has been extended to allow the presence of a 

permeable layer in the wet zone. Fig. 2 shows an example of irregular wave overtopping of a 

permeable slope where x = onshore coordinate: z = vertical coordinate, η  = mean free surface 

elevation above SWL; S = storm tide above z = 0; zb = bottom elevation; h  = mean water depth; 

U = instantaneous depth-averaged cross-shore velocity above the bottom; zp = elevation of the 

lower boundary of the permeable layer; hp = (zb − zp) = vertical thickness of the permeable layer; 

and Up = instantaneous cross-shore discharge velocity inside the permeable layer.  The cross-

shore profiles of zb(x) and zp(x) are specified as input where hp = 0 in the zone of no permeable 

layer.  The lower boundary located at z = zp is assumed to be impermeable for simplicity.  

Kobayashi et al. (2007b) developed a permeable layer model in the wet zone for normally 

incident waves.  This model is extended to obliquely incident waves in the following but the 

extended model has not been verified yet. 
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Fig. 2.  Definition sketch of permeable layer model. 
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The time-dependent model for the flow over a permeable layer in shallow water developed by 

Kobayashi and Wurjanto (1990) and Wurjanto and Kobayashi (1993) is time-averaged and 

simplified to account for the permeable layer in the cross-shore model CSHORE.  The vertically-

integrated continuity equation (19) is modified as 

 

2

cos cos ;
x r x p p o

g
Q hU q Q h U q

C

ησ
θ θ= + + + =  (62) 

where pU  = time-averaged cross-shore discharge velocity; ( )p p
h U  = water flux inside the 

permeable layer with its vertical thickness 
p

h ; and 
o

q  = combined wave overtopping rate above 

and through the permeable layer.  The cross-shore and longshore momentum equations (22) and 

(23) are assumed to remain the same, neglecting the momentum fluxes into and out of the 

permeable layer in the wet zone which is saturated with water.  The bottom friction factor 
b

f  for 

bx
τ  and 

by
τ  given by Eq. (33) includes the effect of the surface roughness of the permeable layer 

and was calibrated in the range of 
b

f  = 0.01 – 0.05 (Kobayashi et al. 2007b).  For the case of 

alongshore uniformity and negligible momentum fluxes into and out of the permeable layer in 

the wet zone, the time-averaged longshore discharge velocity pV  is assumed to be zero because 

of no or negligible driving force to cause the longshore discharge inside the permeable layer.  It 

is noted that the assumption of 0pV =  cannot be validated at present for lack of suitable data. 

 

On the other hand, the wave action equation (36) is modified as 

 cos
B f px

g

D D Dd E Q
C

dx h
θ

ω ω

+ +  
+ = −  

  
 (63) 
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where 
p

D  = energy dissipation rate due to flow resistance in the permeable layer, assuming that 

the energy influx into the permeable layer equals the dissipation rate 
p

D  per unit horizontal area.  

The dissipation rate 
p

D  is expressed as (Wurjanto and Kobayashi 1993) 

 ( ) ( )
1.5

2 2 2 2

p p p p p p p pD h U V U Vρ α β 
= + + +  

 (64) 

where 
p

α  and 
p

β  = laminar and turbulent flow resistance coefficients, respectively, and 
p

V  = 

instantaneous longshore discharge velocity.  Kobayashi et al. (2007b) modified the formulas for 

p
α  and 

p
β  proposed by van Gent (1995) as follows: 

 
( )

2

2
0 1

2 2

50

1
;

p

p p

p n p

n

n D

ν β
α α β β

σ

−
= = +  (65) 

with 

 
( ) ( )0 0

1 2
3 2

50

1 7.5 1
;

2

p p

p n p

n n

n D n T

β β
β β

− −
= =  (66) 

where 0α  and 0β  = empirical parameters calibrated as 0α  = 1,000 and 0β  = 5; 
p

n  = porosity of 

the permeable layer consisting of stone; ν  = kinematic viscosity of the fluid; 50n
D  = nominal 

stone diameter defined as ( )
1/3

50 50 /
n s

D M ρ=  with 50M  = median stone mass and 
s

ρ  = stone 

density; 
p

σ  = standard deviation of the instantaneous discharge velocity; and T  = intrinsic wave 

period used in Eq. (38). 

 

The discharge velocities pU  and 
p

V  in Eq. (64) are assumed to be expressed as 

 cos ; sinp p p p pU U r V rσ θ σ θ= + =  (67) 
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where r  = Gaussian variable whose probability density function is given by Eq. (29); and θ  = 

incident wave angle for the oscillatory velocity direction above and inside the permeable layer.  

The assumptions of the Gaussian velocity distribution and 0pV =  allow one to represent the 

discharge velocities by the mean cross-shore discharge velocity pU  and the standard deviation 

p
σ .  Substitution of Eq. (67) into Eq. (64) yields 

 ( ) ( ) ( )
22

2 2 2

2 1

2
2 1 2cosp p p p p p p pD h U Uρ α σ β β σ σ θ

π

   = + + + + +     
 (68) 

where use is made of the approximate expression of 
f

G  given by Eq. (48) and the assumption of 

sin
p p

U θ σ≪  to simplify Eq. (68).  Approximate equations for pU  and 
p

σ  are derived in the 

following. 

 

Neglecting the inertia terms in the cross-shore momentum equation for the flow inside the 

permeable layer (Kobayashi and Wurjanto 1990), the local force balance between the cross-shore 

hydrostatic pressure gradient and flow resistance is assumed 

 ( )
0.5

2 2 0
p p p p p p

g U U U V
x

η
α β

∂
+ + + =

∂
 (69) 

Eq. (69) is averaged probabilistically using Eq. (67).  For the case of alongshore uniformity, the 

averaged force balance equation is expressed as 

 ( )( )2

2 1

2
1 cos 0p p p

d
g U

dx

η
α β β σ θ

π

 
+ + + + = 

 
 (70) 

where use is made of the approximate expression of 
bx

G  given by Eq. (46) and the assumption of 

sin
p p

U θ σ≪  to simplify Eq. (70).  It is noted that the local force balance between the 



 40

longshore hydrostatic pressure gradient and flow resistance yields 0pV =  for the case of 

alongshore uniformity where η  is independent of the longshore coordinate y .  To derive an 

equation 
p

σ , the approximate analytical method used by Kobayashi et al. (2007b) is adopted.  

Eq. (69) is linearized as 

 ( )1.9 0
p p p p

g U
x

η
α β σ

∂
+ + =

∂
 (71) 

which is used to obtain 

 ( )2 1 * *1.9 ; /
p p p

gkh hηα β β σ σ σ σ σ + + = =   (72) 

where the wave number k  is computed using Eq. (2).  Eq. (72) can be solved analytically to 

obtain 
p

σ  for known *khσ .  After 
p

σ  is obtained, Eq. (70) is used to calculate pU  for known 

/d dxη .  The energy dissipation rate 
p

D  is computed using Eq. (68).  Eq. (62) for assumed 
o

q  is 

used to obtain 
x

Q  and U  where U  is expressed by Eq. (42). 

 

7.  Irregular Wave Runup and Overtopping 

The time-averaged model CSHORE in the wet zone does not predict the shoreline oscillations on 

beaches and coastal structures unlike time-dependent models (e.g., Wurjanto and Kobayashi 

1993).  Kobayashi et al. (2008b) proposed a probabilistic model for irregular wave runup as 

illustrated in Fig. 3.  The shoreline oscillation is assumed to be measured by a runup wire (RW) 

placed parallel to the bottom elevation zb at a vertical height of δr.  The runup wire measures the 

instantaneous elevation ηr above SWL of the intersection between the wire and the free surface 

elevation.  The mean rη  and standard deviation σr of ηr are estimated using the computed cross-
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shore variations of ( )xη  and ( )xησ  of the free surface elevation η above SWL.  The 

probabilities of ηr exceeding ( )r r
η σ+ , rη , and ( )r r

η σ−  are assumed to be the same as the 

probabilities of η exceeding ( )ηη σ+ , η , and ( )ηη σ− , respectively.  The elevations of Z1, Z2, 

and Z3 of the intersections of ( )ηη σ+ , η , and ( )ηη σ−  with the runup wire are obtained for the 

given wire elevation (zb + δr).  The obtained elevations are assumed to correspond to 

1 r r
Z η σ = +  , 2 rZ η= , and ( )3 r r

Z η σ= − .  The mean and standard deviation of 
r

η  are 

estimated as 

 ( ) ( )1 2 3 1 3/ 3 ; / 2r rZ Z Z Z Zη σ= + + = −  (73) 

In CSHORE2009, η  and ησ  are replaced by ( )w bP h z+  and 
w

P ησ  for the computation of Z1, Z2 

and Z3 to account for the transition from the wet zone ( 1
w

P = ) to the wet and dry zone ( 1
w

P < ) 

where 
w

P  is the wet probability explained in Section 8. 
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Fig. 3.  Definition sketch for probabilistic model for irregular wave runup. 
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The runup height R is defined as the crest height above SWL of the temporal variation of ηr.  

The probability distribution of linear wave crests above the mean water level (MWL) is normally 

given by the Rayleigh distribution.  For the case of no wave overtopping, the runup height 

( )rR η−  above the mean elevation rη  is assumed to be given by the Rayleigh distribution 

(Kobayashi et al. 2008b) 

 ( )
1/3

exp 2 r

r

R
P R

R

η

η

  −
 = −  

  −  

 (74) 

where P(R) = exceedance probability of the runup height R above SWL; and R1/3 = significant 

runup height defined as the average of 1/3 highest values of R.  The mean rη  related to wave 

setup is normally neglected in Eq. (74) for the prediction of irregular wave runup on steep 

coastal structures.  For the 1/5 and 1/2 permeable slope experiments conducted by Kobayashi et 

al. (2008b), R1/3 was estimated as 

 ( )1/3 2 tanr rR η θ σ= + +  (75) 

where θ = seaward slope angle from the horizontal and tan 1/ 5θ =  and 1/2 in the experiments.  

It is cautioned that Eqs. (74) and (75) have been calibrated only for permeable slopes with tanθ  

= 0.2 – 0.5 in the absence of wave overtopping. 

 

Wave overtopping occurs when the individual runup height R above SWL exceeds the structure 

crest height Rc above SWL as depicted in Fig. 3.  Wave overtopping reduces R exceeding Rc 

because of overtopping flow on the crest.  Kobayashi and de los Santos (2007) adopted the 

following Weibull distribution: 
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 ( )
1/3

exp 2 r

r

R
P R

R

κ

η

η

  − = −  
  −  

 (76) 

with 

 ( ) ( )3

* * 1/32 0.5 ; /r rc
R R R Rκ η η−= + = − −  (77) 

where κ  = shape parameter with κ  = 2 for the Rayleigh distribution given by Eq. (74); and *R  

= normalized crest height related to the wave overtopping probability Po.  The probability Po of 

R exceeding Rc in Eq. (76) is given by 

 ( )*exp 2
o

P Rκ= −  (78) 

It should be noted that the empirical formula for κ  given by Eq. (77) has been calibrated using 

only 22 permeable slope tests.  The formula for R1/3 given by Eq. (75) has been found to be 

applicable to these 22 tests.  The runup height R2% for the 2% exceedance probability obtained 

using Eq. (76) is given by 

 ( ) ( )2/

2% 1/31.40r rR R
κ

η η= + −  (79) 

where the shape parameter κ  given by Eq. (77) accounts for the decrease of R2% due to the 

decrease of the normalized crest height *R  and the resulting increase of the wave overtopping 

probability Po given by Eq. (78). 

 

The wave overtopping rate qo in Eq. (19) for an impermeable slope and in Eq. (62) for a 

permeable slope needs to be estimated if wave overtopping occurs at the landward end of the 

computation domain located at x = xe in Fig. 2.  For permeable slopes, Kobayashi and de los 

Santos (2007) proposed the following empirical formula: 

 ( ) *

*

b

o o SWL s
q a P q q= +  (80) 
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with 

 

2

cos at
SWL SWL

g
q x x

C

ησ
θ= =  (81) 

where *a  and *b  = empirical parameters; Po = wave overtopping probability; 
SWL

q  = wave-

induced onshore flux in Eq. (62) evaluated at the still water shoreline located at 
SWL

x x=  with 

( )b SWLz x S=  in Fig. 2; and 
s

q  = seepage rate through the permeable layer at 
e

x x= .  It is noted 

that the roller effect has been neglected for relatively steep permeable slopes because of its 

negligible effect, probably because the roller does not develop over a relatively short distance on 

the steep slope.  The empirical parameters *a  and *b  are assumed to depend on the horizontal 

width 
h

L  of the permeable surface above the upper limit of wave setup located at ( ),r rx z  in Fig. 

3 where the infiltration of overtopped water is assumed to be vertical due to gravity.  The 

empirical formulas based on 32 tests were expressed as 

 ( )* * * * * 50exp 0.1 ; 1 0.1 ; /h na L b L L L D= − = + =  (82) 

where *L  = infiltration width normalized by the nominal stone diameter 50n
D , crudely 

representing the horizontal number of stones above the maximum wave setup. 

 

On the other hand, Kobayashi and de los Santos (2007) estimated the seepage rate 
s

q  for 

normally incident waves 

 ( )
( )

0.5

1.5

1

0.2 fors r e r e

e r

g
q z z z z

x x β

 
 = − >
 − 

 (83) 

where 
e

z  = elevation of the landward end of the impermeable surface 
p

z  as shown in Fig. 2; and 

1β  = turbulent flow resistance coefficient defined in Eq. (66).  To derive Eq. (83), the seepage 
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flow was assumed to be driven by the horizontal pressure gradient from the point ( ),r rx z  to the 

point ( ),e ex z .  Consequently, 0
s

q =  if 
r e

z z< .  If 
r e

x x= , the permeable layer is wet always 

and ps pq h U=  at 
e

x x=  where the water flux pph U  in the permeable layer is included in the 

continuity equation (62). 

 

Kobayashi et al. (2007c) examined the transition from little wave overtopping to excessive wave 

overtopping and overflow on an impermeable smooth levee with a seaward slope of 1/5 in wave-

flume experiments consisting of 107 tests.  For the impermeable slope, Eqs. (75) and (77) for the 

permeable slope had to be modified as  

 1/3 4 ; 2r r
R η σ κ= + =  (84) 

The wave overtopping probability 
o

P  is given by Eq. (78) with 2κ =  where the normalized crest 

height *R  above SWL is defined in Eq. (77) with 1/3R  given by Eq. (84).  It is noted 1
o

P =  if 

* 0R < .  For the impermeable slope, the seepage rate 0
s

q =  in Eq. (80) and Eq. (82) yields 

* 1a =  and * 1b =  for 0
h

L = .  As a result, the wave overtopping rate 
o

q  is given by 
o o SWL

q P q= .  

For the case of combined wave overtopping and overflow, Kobayashi et al. (2007c) expressed 

the combined rate 
o

q  as 

 for 0o o SWL SWL SWL SWLq P q H gH H= + >  (85) 

with 

 at
SWL c SWL

H R x xη= − =  (86) 

where 
SWL

H  = head for the overflow; η  = mean water level above SWL; and 
c

R  = levee crest 

height above SWL.  If 0
c

R < , the levee crest is below SWL and 
SWL

x  is chosen at the seaward 
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edge of the levee crest.  For 0
SWL

H > , 
SWL

H  is the mean water level above the levee crest and 

SWLgH  may be regarded as the water velocity on the crest. 

 

In summary, Eqs. (73) – (86) are essentially empirical and were used in the cross-shore model 

CSHORE2008 to predict irregular wave runup, overtopping, seepage and overflow on permeable 

and impermeable structures.  These equations have not been verified for irregular wave 

overtopping and overflow of dunes.  These equations do not predict the spatial variations of the 

hydrodynamic variables required for the sediment model and the computation of dune profile 

evolution.  Consequently, a hydrodynamic model for the intermittently wet zone landward of the 

maximum wave setup has been developed in Section 8.  In CSHORE2009, the formula for 
o

P  

given by Eq. (78) and the formulas for 
o

q  given by Eqs. (80) and (85) are removed and replaced 

by new formulas for 
o

P  and 
o

q  based on the hydrodynamic model for the wet and dry zone.  The 

values of 1/3, ,r r Rη σ  and 2%R  are computed in CSHORE2009 because this hydrodynamic model 

does not predict individual wave runup events. 

 

8.  Model for Impermeable Wet and Dry Zone 

Time-dependent numerical models such as the nonlinear shallow-water wave model by 

Kobayashi et al. (1989) can predict the water depth and horizontal velocity in the intermittently 

wet and dry (swash) zone on beaches and inclined structures.  However, the time-dependent 

hydrodynamic computation requires considerable computation time and may not lead to an 

accurate prediction of dune profile evolution in view of the earlier attempt by Tega and 

Kobayashi (1996).  A time-averaged probabilistic model is developed here to predict the cross-



 47

shore variations of the wet probability and the mean and standard deviation of the water depth 

and cross-shore velocity in the swash.  The developed model is very efficient computationally 

and can be calibrated using a large number of data sets.  The present model is limited to normally 

incident waves and alongshore uniformity.  A sediment transport model in the swash zone is 

formulated by modifying the sediment transport model in the wet zone. 

 

8.1  Water depth and velocity 

Van Gent (2002a) and Schüttrumpf and Oumeraci (2005) analyzed the water depth and velocity 

of waves overtopping of dikes.  Kobayashi et al. (2010) expanded their analyses for the 

prediction of wave overtopping and overwash as presented in the following. 

 

For normally incident waves on impermeable beaches and inclined structures of alongshore 

uniformity, the time-averaged cross-shore continuity and momentum equations derived from the 

nonlinear shallow-water wave equations are expressed as 

 
o

hU q=  (87) 

 2 2 1
;

2 2

b
bx b bx

d g dz
hU h gS h f U U S

dx dx

 
+ = − − = 

 
 (88) 

where h  and U  = instantaneous water depth and cross-shore velocity, respectively; 
o

q  = wave 

overtopping rate; g  = gravitational acceleration; 
bx

S  = cross-shore bottom slope; and 
b

f  = 

bottom friction factor which is allowed to vary spatially.  The wave energy equation 

corresponding to Eqs. (87) and (88) was given by Kobayashi and Wurjanto (1992) who used it to 

estimate the rate of wave energy dissipation due to wave breaking.   The wave energy equation is 
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not used in CSHORE because no formula is available to estimate the time-averaged energy 

dissipation rate in the wet and dry zone. 

 

The instantaneous water depth h  depends on the cross-shore coordinate x  and the swash 

hydrodynamic time t .  The water depth h  at given x  is described probabilistically rather than in 

the time domain.  Kobayashi et al. (1998) analyzed the probability distributions of the free 

surface elevations measured in the shoaling, surf and swash zones.  The measured probability 

distributions were shown to be in agreement with the exponential gamma distribution which 

reduces to the Gaussian distribution and the exponential distribution when the skewness 

approaches zero offshore and two in the swash zone, respectively.  The assumption for the 

Gaussian distribution assumed in Eq. (29) has simplified the cross-shore model CSHORE in the 

wet zone significantly.  The assumption of the exponential distribution is made here to simplify 

the cross-shore model in the wet and dry zone.  The probability density function ( )f h  is 

expressed as 

 ( )
2

exp for 0w
w

P h
f h P h

h h

 
= − > 

 
 (89) 

with 

 ( ) ( )
0 0

;
w

P f h dh h h f h dh

∞ ∞

= =∫ ∫  (90) 

where 
w

P  = wet probability for the water depth 0h > ; and h  = mean water depth for the wet 

duration.  The dry probability of 0h =  is equal to ( )1 wP− .  The mean water depth for the entire 

duration is equal to 
w

P h .  The overbar in Eqs. (87) and (88) indicates averaging for the wet 
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duration only.  The free surface elevation ( )η η−  above MWL is equal to ( )h h− .  The standard 

deviations of η  and h  are the same and given by 

 

0.5

2
2

w

w

P
h P

ησ  
= − + 
 
 

 (91) 

which yields hησ =  for 1
w

P = .  This equality was supported by the depth measurements in the 

lower swash zone by Kobayashi et al. (1998) who assumed 1wP =  in Eq. (89). 

 

The cross-shore velocity U  depends on x  and t  and is related to the depth h   in the swash 

zone.  The following relationship between U  and h  may be assumed to express U  as a function 

of h  

 
s

U gh Uα= +  (92) 

where α  = positive constant exceeding unity for supercritical flow; and 
s

U  = steady velocity 

which is allowed to vary with x .  The steady velocity 
s

U  is intended to account for offshore 

return flow on the seaward slope and the downward velocity increase on the landward slope.  

Holland et al. (1991) measured the bore speed and flow depth on a barrier island using video 

techniques and obtained 2α ≃  where the celerity and fluid velocity of the bore are assumed to 

be approximately the same.  Tega and Kobayashi (1996) computed wave overtopping of dunes 

using the nonlinear shallow-water wave equations and showed 2α ≃  for the computed U  and 

h .  As a result, use may be made of 2α =  as a first approximation.  Eq. (92) implies that the 

cross-shore velocity U  increases monotonically with the increase of h  at given x .  Eq. (92) 

yields 
s

U U=  when 0h = , which may be acceptable in view of the very small depth in the wet 
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and dry zone.  Using Eqs. (89) and (92), the mean U  and standard deviation 
U

σ  of the cross-

shore velocity U  can be expressed as 

 ( )
0.5

2
w w s

U P gh P U
π

α= +  (93) 

 ( )( ) ( )
2

2 2 2
U s w s w s

gh U U U P U P U Uσ α= − − − + −  (94) 

 

Eq. (92) is substituted into Eqs. (87) and (88) which are averaged for the wet duration using Eq. 

(89).  The continuity equation (87) yields 

 

0.5

3

4
s o

w

gh
h U h q

P

πα  
+ = 

 
 

 (95) 

After lengthy algebra, the cross-shore momentum equation (88) is expressed as 

 ( )
2

2
2

2

o b
bx b s

w

d gh q f
B gS h ghG r

dx P h
α

 
 + = − −
 
 

 (96) 

with 

 29 3
2 1 ;

16 4

s
s

o s

U h
B r

q U h

π π
α

 
= − + = 

− 
 (97) 

The function ( )b sG r  in Eq. (96)  with 
s

r r=  for simplicity is given by 

 2( ) 1 for 0
b

G r r r rπ= + + ≥  (98) 

 ( ) ( ) [ ]2 22exp 1 2 ( ) 1 for 0
b

G r r r r erf r rπ= − − − + + <  (99) 
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where erf  is the error function.  The function 
b

G  increases monotonically with the increase of r  

and 0
b

G =  and 1 for r = −  0.94 and 0.0, respectively, as shown in Fig. 4.  For 1.5r < − , 

( )21
b

G r rπ− + +≃ . 

 

Fig. 4.  Function Gb(r) for wet and dry zone. 

 

Eqs. (95) and (96) are used to predict the cross-shore variation of h  and 
s

U  for assumed 
o

q  

where ,Uησ  and 
U

σ  are computed using Eqs. (91), (93) and (94), respectively.  It is necessary 

to estimate the wet probability 
w

P  empirically.  To simplify the integration of the momentum 

equation (96), the following formula is adopted: 
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 ( )

1
3

2
1 1

3

1

1 ; for

n

o
w o o o c

h h q
P A A A x x

h h Bgh

−
    
 = + − = ≤   
     

 (100) 

where 1h  = mean water depth at the location of 1
w

P = ; n  = empirical parameter for 
w

P ; A o = 

parameter related to the wave overtopping rate 
o

q  normalized by the depth 1h  where water is 

present always.  The transition from the wet ( 1
w

P =  always) zone to the wet and dry ( 1
w

P < ) 

zone may be taken at 
SWL

x x=  where 
SWL

x  is the cross-shore location of the still water shoreline 

of an emerged slope (see Fig. 5) or the seaward edge of a submerged crest as discussed in 

relation to Eqs. (85) and (86).  Eq. (100) is assumed to be valid on the seaward slope and crest in 

the region of 
c

x x≤  where 
c

x  = landward end of the horizontal crest in Fig. 5. 

z   (x)b

SWL

MWL

0

r

S

R c

h

xcx
SWL

x x

o
q

z

 
 

Fig. 5.  Transition from wet model ( )rx x<  to wet and dry model ( )SWLx x>  for emerged 

impermeable structure ( )0cR > . 

 

Integration of Eq. (96) for 
w

P  given by Eq. (100) with 1h h=  at 1x x=  yields ( )h x  for 

1 c
x x x≤ ≤  

 ( ) ( ) ( )
1

1
2

1
1 11 1

2

n
x

n o b b b b

x

h
B A h z x z x f G dx

h

α
−  

 + − = − + 
   

∫  (101) 

where ( ) ( )2 / 1nB B n n= − − ; and ( )bz x  = bottom elevation at the cross-shore location x .  The 

mean water depth h  at given x  is computed by solving Eq. (101) iteratively where the bottom 



 53

friction factor 
b

f  is allowed to vary with x  and the function 
b

G  given by Eqs. (98) and (99) 

depends on 
s

r  defined in Eq. (97).  The empirical parameter n  is taken to be in the range of 

1 2n< <  so that 0
n

B > .  The formula for n  calibrated using the 107 tests of wave overtopping 

and overflow on a dike by Farhadzadeh et al. (2007) was expressed as 

( )
0.3

1.01 0.98 tanh
o

n A= +     where 1.01 n≤ ≤  1.99. 

 

The wave overtopping and overflow rate 
o

q  is predicted by imposing 0
s

U =  in Eq. (95) at the 

location of 
c

x  

 

0.5

3
at

4

c
co c

c

gh
q h x x

P

πα  
= = 

 
 

 (102) 

where ch  and 
c

P  are the computed mean depth h  and wet probability 
w

P  at 
c

x .  The wave 

overtopping probability 
o

P  may be related to the wet probability 
c

P  at 
c

x x= where both  
o

P  and 

c
P  are in the range of 0.0 – 1.0.  The empirical relation of [ ]

0.8
tanh(5 )

o c
P P=  is fitted for the 107 

tests by Farhadzadeh et al. (2007). 

 

On the slope landward of the crest, the wet probability 
w

P  is assumed to be constant and equal to 

c
P  

 for
w c c

P P x x= ≥  (103) 

Substituting Eq. (103) into Eq. (96) and integrating the resulting equation from 
c

x  to x , the 

mean depth ( )h x  on the landward slope in the region of 
c

x x>  is expressed as 
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 ( ) ( )
2

2 29
1 1

64 2 2
c

x
c c

b c b b b

c c x

h h P
z x z x f G dx

h B h B h

πα α    
 − + − = − −  
       

∫  (104) 

where the bottom elevation ( )bz x  decreases with the landward increase of x  in the region of 

c
x x> .  Eq. (104) is solved iteratively to compute h  at given x . 

 

For assumed 
o

q , the landward marching computation of h , ησ , U  and 
U

σ  is initiated using the 

wet model in Section 4 from the seaward boundary 0x =  to the landward limit located at 
r

x x=  

which corresponds to the location where the computed h  or ησ  becomes negative or h  becomes 

less than 0.1 cm for an emerged crest as shown in Fig. 5.  For a submerged crest, the landward 

limit of 
r

x  is taken as 
c

x .  The landward marching computation is continued using the wet and 

dry model in this section from the location of 
SWL

x x=  where 1h h=  in Eq. (101) to the landward 

end of the computation domain or until the mean depth h  becomes less than 0.001 cm.  Then, 

the rate 
o

q  is computed using Eq. (102).  This landward computation starting from 0
o

q =  is 

repeated until the difference between the computed and assumed values of 
o

q  is less than 1%.  

This convergency is normally obtained after several iterations.  The computed values of , ,h Uησ  

and 
U

σ  by the two different models in the overlapping zone of 
SWL r

x x x< <  (see Fig. 5) are 

averaged to smooth the transition from the wet zone to the wet and dry zone. 

 

Kobayashi et al. (2010) compared this hydrodynamic model for the impermeable wet and dry 

zone with the 107 tests by Farhadzadeh et al. (2007) and the 100 tests conducted by van Gent 

(2002b) who measured the water depth and velocities on the crest and landward (inner) slopes of 
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six different dikes.  The agreement was mostly within a factor of two for the wave overtopping 

rates and probabilities as well as the water depth, velocity, and discharge on the crest and 

landward slope exceeded by 2% of the incident 1000 waves.  Kobayashi et al. (2010) modified 

Eqs. (101) and (104) to allow the integration of Eq. (96) starting from an arbitrary location 

landward of the still water shoreline.  This modification is necessary for a berm that is slanted 

downward toward the toe of a dune.  The wet probability wP  on the downward berm slope is 

assumed to be the same as that at the seaward end of this downward slope in the same way as in 

Eq. (103) for the downward dune slope. 

 

8.2  Sediment transport 

The sediment transport model for the wet zone in Section 5 is adjusted for the wet and dry zone.  

Normally incident waves and alongshore uniformity are assumed here.  The Gaussian velocity 

distribution has been assumed in Section 5, whereas U   in the wet and dry zone is expressed as 

Eq. (92) along with the exponential distribution of h  given by Eq. (89). 

 

First, the movement of sediment particles is assumed to occur when the instantaneous bottom 

shear stress given by 20.5
b

f Uρ  exceeds the critical shear stress ( ) 501 cg s dρ ψ−  as has been 

assumed for Eq. (49).  The probability 
b

P  of sediment movement is then the same as the 

probability of cbU U>  where ( )
0.5

1

502 1
cb c b

U g s d fψ − = −  .  Using Eqs. (89) and (92), 
b

P  can be 

shown to be given by 

 

 



 56

 
for

b w s cb
P P U U= >

 (105) 

 

( )
2

2
exp forw cb s

b w s cb

P U U
P P U U

ghα

 −
= − ≤ 

  
 (106) 

 
( ) ( )

2 2

2 2
1 exp exp forw cb s w cb s

b w s cb

P U U P U U
P P U U

gh ghα α

    + − 
= − − + − − >    

        

 (107) 

where the upper limit of 
b

P  is the wet probability 
w

P  because no sediment movement occurs 

during the dry duration. 

 

Second, sediment suspension is assumed to occur when the instantaneous turbulent velocity 

estimated as ( )
1/3

/ 2
b

f U  exceeds the sediment fall velocity 
f

w  as has been assumed for Eq. 

(50).  The probability 
s

P  of sediment suspension is then the same as the probability of csU U>  

where ( )
1/3

2 /
cs f b

U w f= .  The probability 
s

P  is then given by  

 for
s w s cs

P P U U= >  (108) 

 
( )

2

2
exp forw cs s

s w s cs

P U U
P P U U

ghα

 −
= − ≤ 

  
 (109) 

 
( ) ( )

2 2

2 2
1 exp exp forw cs s w cs s

s w s cs

P U U P U U
P P U U

gh ghα α

    + − 
= − − + − − >    

        

 (110) 

 

which reduces to Eqs. (105) – (107) if 
cs

U  is replaced by 
cb

U .  If 
s b

P P> , use is made of 
s b

P P=  

because sediment suspension occurs only when sediment movement occurs. 
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Third, the suspended sediment volume 
s

V  per unit horizontal bottom area in the wet zone is 

estimated using Eq. (51) where 0
by

S =  for alongshore uniformity.   CSHORE2008 (Kobayashi 

and Farhadzadeh 2008) estimated  
s

V  using the same equation with the assumption of negligible 

wave breaking in the wet and dry zone.  This approach was unsuccessful.  In the wet and dry 

zone, 
s

V  is assumed in CSHORE2009 to be given by 

 ( )
0.5

21
s s Bf bx

V PV S= +  (111) 

where BfV = potential suspended sediment volume on a horizontal bottom when 1sP = .  The 

value of BfV  is assumed to be constant and chosen so that the suspended sediment volume 
s

V  is 

continuous at SWLx x=  at the seaward end of the wet and dry zone.  The assumption of constant 

BfV  may be reasonable because suspended sediment in the swash zone tends to remain 

suspended.  It is noted that sP  given by Eqs. (108) – (110) decreases landward with the decrease 

of wP  

  

Kobayashi et al. (2010) estimated the cross-shore suspended sediment transport rate 
sx

q  using 

Eq. (52). 

 ( )
0.5

; / tansx x s x bxq a U V a a S aφ = = + ≥
 

 (112) 

where U  is given by Eq. (93).  The parameter xa  had to be taken as unity in the zone of 0U >  

over the dune crest to predict minor wave overwash.  However, Eq. (112) was found to 

underpredict major wave overwash in the three small-scale tests conducted by Figlus et al. 

(2009) to investigate the transition from minor to major wave overwash of dunes constructed of 
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fine sand.  For these tests, suspended load was computed to be dominant.  In order to account for 

the wave overtopping rate oq  explicitly, Eq. (112) is modified as 

 ( ) ; /sx x o o s o oq a U a U V U q h= + =  (113) 

where oa = empirical parameter with 0oa =  in Eq. (112); and oU  = onshore current due to oq , 

which is significant only in the zone of the very small depth h .  The parameter xa  is the same as 

in Eq. (112) without any adjustment in the zone of 0U > .  The calibrated value for the three 

tests by Figlus et al. (2009) was in the range of oa  = 1.3 – 1.8.  However, the range of  oa  = 0.1 – 

0.5 was necessary for the minor wave overwash data used by Kobayashi et al. (2010) to calibrate 

Eqs. (111) and (112).  The accurate prediction of wave overtopping and overwash is very 

difficult because of the small water depth and large velocity in the zone which is wet 

intermittently. 

 

Fourth, the cross-shore bedload transport rate 
bx

q  is estimated using Eq. (56) for the case of 

normally incident waves ( )sin 0θ =  and no longshore current ( )0V =  where 
T U

σ σ=  for 

sin 0θ =  in Eq. (32).  For this case, 
bx

q  is given by 

 
( )

( )
3

1

b U
bx s bx

b P
q G S

g s

σ
=

−
 (114) 

where the bottom slope function ( )s bxG S  is given by Eqs. (58) and (59), and the standard 

deviation 
U

σ  is given by Eq. (94) for the wet and dry zone.  The parameter b in the wet and dry 

zone is chosen so that the value of bq  is continuous at SWLx x= . 
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Finally, the cross-shore sediment transport rates 
sx

q  and 
bx

q  computed for the wet zone and the 

wet and dry zone are averaged in the overlapping zone of 
SWL r

x x x< <  for the smooth transition 

between the two zones in the same way as the smooth transition of , ,h Uησ  and 
U

σ  as explained 

at the end of Section 8.1.  The linear extrapolation for the case of no overwash given by Eq. (60) 

for scarping is not applied now that the sediment transport in the wet and dry zone is predicted.  

The continuity equation of bottom sediment given by Eq. (61) with 0
y

q =  is solved numerically 

to obtain the bottom elevation at the next time level.   

 

9.  Model for Permeable Wet and Dry Zone 

The model in Section 8 is extended to a permeable wet and dry zone.  The extended model is 

calibrated and verified using available data for stone structures. 

 

A number of time-dependent hydrodynamic models for rubble mound structures have already 

been developed as reviewed by Losada et al. (2008).  These numerical models try to predict the 

temporal and spatial variations of wave dynamics as accurately as possible.  The computation 

time normally increases with the increase of the resolution and accuracy.  The computationally 

advanced models are used to predict hydrodynamic variables for relatively short durations.  To 

reduce computation time considerably, Kobayashi et al. (2007b) proposed the probabilistic 

model CSHORE.  The time-varying wave variables are expressed using a probability 

distribution.  The spatial variations of the mean and standard deviation are computed using the 

time-averaged governing equations.  The probabilistic time-averaged model requires additional 

assumptions but its computational efficiency allows the calibration of the model parameters 

using a large number of tests.  This probabilistic model for the wet zone on the permeable armor 
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layer is extended in this section to the wet and dry zone in order to predict the wave motion 

above the still water level (SWL).  The extended model provides the hydrodynamic input to a 

damage progression model that predicts the slow evolution of the armor layer profile. 

 

The movement of individual stone units on the armor layer may be computed using the equation 

of motion for each armor unit (Kobayashi and Otta 1987).  The profile evolution of the armor 

layer may then be predicted by computing the displacements of all the armor units (Norton and 

Holmes 1992).  However, this approach has never been adopted for practical applications 

probably because of its computation time.  The sediment transport model in Section 8.2 is 

modified in this section to predict the profile evolution of the armor layer in the same manner as 

the prediction of the beach profile evolution.  This simple approach neglects the discrete nature 

of armor stone units but is very convenient for the prediction of the armor layer profile evolution 

averaged alongshore where the alongshore averaging reduces the discrete nature. 

  

Fig. 6.   Transition from wet model  ( )rx x< to wet and dry model ( )SWLx x> on permeable 

stone layer 
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9.1  Water depth and velocity 

Fig. 6 depicts the permeable stone layer analyzed in this section.  Alongshore uniformity and 

normally incident waves are assumed.  The cross-shore coordinate x is positive onshore with x=0 

at the offshore location of the wave measurement.  The vertical coordinate z is positive upward 

with z=0 at the datum.  The still water level (SWL) above the datum is allowed to vary in time 

during a storm or an experiment.  The upper and lower boundaries of the permeable stone layer 

are located at z = zb(x) and zp(x), respectively, where the lower boundary is assumed to be 

impermeable to simplify the analysis.  The crest height Rc is taken conventionally as the structure 

height above SWL.  The crest location xc is defined here as the highest and most landward 

location.  The wave overtopping rate is denoted as qo.  The SWL shoreline on the seaward slope 

is located at xSWL.  The mean water level (MWL) is located at ( )z S η= +  where η  is the wave 

setup above SWL.  The mean water depth h  above z = zb is given by  ( )bh S zη= + − .  The 

cross-shore location xr is the landward limit of the time-averaged model in the wet zone 

presented in Section 6. 

 

The time-averaged model for the permeable slope developed by Kobayashi et al. (2007b) has 

been modified using linear wave and current theory where wave overtopping induces onshore 

current.  The time-averaged continuity, momentum, and wave action equations are used to 

predict the cross-shore variations of the mean U  of the depth-averaged cross-shore velocity U, 

the mean η of the free surface elevation η above SWL, and the free surface standard deviation 

ησ .  The overbar denotes time averaging.  The root-mean-square (RMS) wave height is defined 

as rms 8H ησ= .  Linear progressive wave theory is used locally to express the velocity standard 
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deviation Uσ  in terms of ησ .  The probability distributions of η and U are assumed to be 

Gaussian.  The equivalency of the time averaging and probabilistic averaging is assumed to 

express the time-averaged terms in the governing equations in terms of η , ησ , U and Uσ .  The 

permeability effects are included in the Section 6. 

 

The landward-marching computation using this model for the wet zone is continued as long as 

the computed h and ησ are larger than 0.1 cm.  The end location of the computation is denoted as 

xr in Fig. 6.  The time-average model for the wet zone cannot predict wave overtopping.  

Consequently, CSHORE2008 relied on empirical formulas for wave overtopping and seepage 

rates.  A separate model for the wet and dry zone is developed and connected with the model for 

the wet zone.  This procedure is the same as that used in Section 8.1.  The time-averaged cross-

shore continuity and momentum equations derived from the nonlinear shallow-water wave 

equations on the permeable slope (Wurjanto and Kobayashi 1993) are expressed as  

 ( ) p

d
hU w

dx
= −  (115) 

 2 2 1

2 2

b
b b p

d g dz
hU h gh f U U u w

dx dx

 
+ = − − − 

 
 (116) 

where h and U = instantaneous water depth and cross-shore velocity, respectively; wp = vertical 

seepage velocity which is taken to be positive downward; g = gravitational acceleration; zb = 

bottom elevation above the datum z=0; fb = bottom friction factor which is allowed to vary 

spatially; and ub = horizontal fluid velocity at z = zb.  The last term on the right hand side of Eq. 

(116) represents the time-averaged flux of the  horizontal momentum into the permeable layer.  
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The overbar in Eqs. (115) and (116) for the wet and dry zone indicates averaging for the wet 

duration only because no water exists during the dry duration. 

 

The continuity and approximate momentum equations for the flow inside the permeable layer are 

expressed as 

 
p

p

dq
w

dx
=  (117) 

 ( )1p p p

d
U U g

dx

η
α β+ = −  (118) 

with 

 

 
( )
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12 3

50 50

5 11
1000 ;

pp

p

p n n p

nn

n D D n

ν
α β

− −
= =  

 
 (119) 

where qp = time-averaged horizontal volume flux in the permeable layer; pU = time-averaged 

horizontal discharge velocity; 
pα and 1β  = coefficients associated with the laminar and turbulent 

flow resistance in Eq. (65), respectively; 
pn = porosity of the permeable layer; 50n

D  = nominal 

stone diameter; and ν = kinetic viscosity of the fluid.  Eq. (119) is based on the formula 

developed by van Gent (1995) and calibrated by Kobayashi et al. (2007b).  The resistance 

component associated with the oscillatory flow is simply neglected in Eq. (118) which is solved 

analytically to obtain the discharge velocity pU
 
driven by the horizontal pressure gradient due to 

( )b
h z Sη = + − where h and zb vary with x.  It is noted that Eq. (118) retains only the leading 

terms in the horizontal momentum equation given by  Wurjanto and Kobayashi (1993).   
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Adding Eqs. (115) and (117) and integrating the resulting equation with respect to x, the 

vertically integrated continuity equation is obtained  

 p ohU q q+ =  (120) 

where the wave overtopping rate qo is defined as the sum of the volume fluxes above and inside 

the permeable layer in the same way as in Eq. (62).  The volume flux qp is estimated as 

 ( )p w p p p
q P U zη= −  (121) 

where Pw = wet probability defined as the ratio between the wet and entire durations:  pη = 

average water level inside the permeable layer; and zp = elevation of the impermeable lower 

boundary.  The elevation pη and zp are relative to the datum z = 0 in Fig. 6 and    ( )p p
zη −  is the 

thickness of water inside the permeable layer.  The elevation pη is estimated as  

 ( )1 forp w b w p pP z P z z Sη = + − ≥  (122) 

 ( )1 forp w b w pP z P S z Sη = + − <  (123) 

The upper bound of pη for Pw = 1 is the upper boundary of the permeable layer located at z = zb.  

The lower bound of pη for Pw = 0 is the higher elevation of the lower boundary zp of the 

permeable layer and the still water level S.  The wet probability Pw in Eq. (121) ensures that 

0pq = if 0
w

P = .  Eqs. (121)– (123) based on physical reasoning may be crude but are used along 

with Eqs. (118) and (119) to estimate qp for the known h  and Pw. 

 

The momentum flux in Eq. (116) is expressed as  

 ( )
0.5

b p m w mu w P gh wα=  (124) 
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with 

 ( )1p m m
w w gα β+ =  (125) 

 

where 
m

α =empirical parameter; and wm = maximum downward seepage velocity due to the 

gravity force, obtained by solving Eq. (125) analytically.  The seepage velocity wp is assumed to 

be of the order of wm or less.  The horizontal velocity ub at z = zb  is assumed to be of the order of 

( )
0.5

gh .  Eq. (124) assumes that the downward flux of the horizontal momentum during the wet 

duration is much larger than the upward momentum flux from the permeable layer. 

 

The cross-shore variation of the mean water depth h  is obtained by solving the momentum 

equation (116) together with the continuity equation (120).  The probability density function f(h) 

in the wet and dry zone is assumed to be exponential and given by 

 ( )
2

exp for 0w
w

P h
f h P h

h h

 
= − > 

 
 (126) 

with 

 
0 0

( ) ; ( )wP f h dh h hf h dh
∞ ∞

= =∫ ∫  (127) 

Eqs. (126) and (127) are the same as Eqs. (89) and (89) but presented again for clarity.  The wet 

probability Pw equals the probability of the instantaneous water depth h > 0.  The dry probability 

of h = 0 is equal to (1 − Pw).  The mean water depth for the wet duration is h  but the mean depth 

for the entire duration is equal to wP h .  The free surface elevation η  above SWL is given by 

( )bh z Sη = + − where zb and S are assumed to be invariant during the averaging.  The standard 

deviations of η and h are the same and given by  
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0.5

2
2

w

w

P
Ph

ησ  
= − + 
 

 (128) 

which is the same as Eq. (91). 

 

The cross-shore velocity U may be related to the depth h in the wet and dry zone in the same way 

as in Eq. (92) 

 
s

U gh Uα= +  (129) 

where α = positive constant taken as 2α = ; and Us = steady velocity which is allowed to vary 

with x.  The steady velocity Us is included to account for offshore return flow on the seaward 

slope and crest and the downward velocity increase on the landward slope.  Using Eqs. (126) and 

(129), the mean U and standard deviation 
U

σ of the cross-shore velocity U can be expressed as 

 ( )
0.5

2
w w s

U P gh P U
π

α= +  (130) 

 ( )( ) ( )
2

2 2 2
U s w s w s

gh U U U P U P U Uσ α= − − − + −  (131) 

Eqs. (128), (130) and (131) express ησ , U and 
U

σ in terms of h , 
w

P  and 
s

U  which vary with x. 

 

Eq. (129) is substituted into Eqs. (116) and (120) which are averaged for the wet duration using 

Eq. (126).  The continuity equation (120) yields 

 

0.5

3
;

4
s o p

w

gh
h U h q q q q

P

πα  
+ = = − 

 
 (132) 

where q = volume flux above the permeable layer.  After lengthy algebra, the momentum 

equation (116) is expressed as  
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 ( ) ( )
2 2

0.5
2

2

b b
b s m w m

w

d gh q dz f
B gh ghG r P gh w

dx P dxh
α α

 
 + = − − −
 
 

 (133) 

with 

 29 3
2 1 ;

16 4
s

s

s

U h
B r

q U h

π π
α

 
= − + = 

− 
 (134) 

where the parameter B is related to the momentum flux term on the left hand side of Eq. (116).  

The function ( )b sG r  in Eq. (133) is given by Eqs.  (98) and (99). 

 

Eqs. (132) and (133) are used to predict the cross-shore variation of h and Us for assumed qo.  It 

is necessary to estimate the wet probability Pw empirically.  To simplify the integration of Eq. 

(133), the following formula is adopted: 

 ( )

1
3

2 2
1 1 1

1 13 3

1 1

1 ; ;

n

w

h h q q
P A A A A

h h Bgh Bgh

−
    
 = + − = =   
     

 (135) 

where 1h  and 1q = mean water depth and volume flux, respectively, at the location of x = x1 

where Pw = 1; n = empirical parameter for Pw ; and A and A1 = dimensionless variables related to 

q and q1, respectively.  The transition from the wet (Pw = 1 always) zone to the wet and dry (Pw < 

1) zone may be taken at x1 = xSWL where xSWL is the cross-shore location of the still water 

shoreline of an emerged crest as shown in Fig. 6.  Eq. (135) is assumed to be valid on the upward 

slope and horizontal crest in the region of 1 c
x x x≤ ≤ where 

c
x is the highest and most landward 

location of the structure. 

 

Integration of Eq. (133) for Pw given by Eq. (135) starting from 1h h= at 1x x= yields ( )h x
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 ( ) ( ) ( )
( )1

1

1 2
11 1 0.5

1 1
2

n
x

b w m
n b b b m

x

h f P w
B A h z x z x G dx

h gh
α α

−       + − = − + +         
∫  (136) 

where Bn = B(2 − n)/(n−1); and zb(x) = bottom elevation at the cross-shore location x. The mean 

water depth h at given x is computed by solving Eq. (136) iteratively.  The empirical parameter n 

is taken to be in the range of 1 < n < 2 so that Bn > 0.  The formula for n for the impermeable wet 

and dry zone in Section 8.1 is adopted and expressed as ( )
0.3

1.01 0.98 tanh
o

n A = +    where 

1.01 1.99n≤ ≤ and ( )32
1/

o o
A q Bgh= . 

 

On the downward slope in the region of x > xc, the wet probability Pw is assumed to be given by 

 
2 2

1 1

3
c

w c

q q
P P

Bgh

− − −
= +  (137) 

where Pc and qc are the computed wet probability Pw and volume flux q at x = xc.  Substituting 

Eq. (137) into Eq. (133) and integrating the resulting equation from xc to x, the mean depth 

( )h x is expressed as  

 ( ) ( )
( )

2
2

2

3 0.5
1 1

224 c

xcc c c b w m
b c b b m

x
c cc

h P q h P f P w
z x z x G dx

h h BhgBh gh
α α

        − + − = − − +             

∫  (138) 

where ch is the computed mean depth at x = xc. 

 

The wave overtopping rate qo is predicted by imposing Us = 0 in Eq. (132) at the crest location xc 
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0.5

3
at

4

c
co p c

c

gh
q h q x x

P

πα  
= + = 

 
 (139) 

 

The wave overtopping probability Po may be related to the wet probability Pc at x = xc where 

both Po and Pc are in the range of 0.0 – 1.0.  The empirical relation of ( )
0.8

tanh 5o cP P =   for the 

impermeable wet and dry zone in Section 8.1 is adopted to estimate oP . 

 

For assumed qo, the landward marching computation of , ,h Uησ and Uσ is initiated using the wet 

model in Section 6 from the seaward boundary x = 0 to the landward limit located at x = xr.  The 

landward marching computation is continued using the wet and dry model in this section from 

the location of x = xSWL where 1h h= to the landward end of the computation domain or until the 

mean depth h becomes less than 0.001 cm.  The rate qo is computed using Eq. (139) together 

with the overtopping probability Po.  This landward computation starting from qo = 0 is repeated 

until the difference between the computed and assumed values of qo is less than 1%.  This 

convergency is normally obtained after several iterations.  The computed values of , ,h Uησ and 

Uσ by the two different models in the overlapping zone of xSWL < x < xr (see Fig. 6) are averaged 

to smooth the transition from the wet zone to the wet and dry zone. 

 

Farhadzadeh et al. (2009) compared the numerical model with S, OS and O test series explained 

by Kobayashi and de los Santos (2007) and D  test series by van Gent (2002).  The number of 

tests varied from 10 to 18 for the four test series.  The total number of tests was 52.  The seaward 

slope was in the range of 1/5 to 1/2.  The nominal stone diameter Dn50 varied from 0.49 to 4.23 
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cm.  The maximum vertical thickness ta of the armor layer was in the range of 0.49 to 14.0 cm 

where ta corresponds to the maximum value of [zb(x) − zp(x)] in Fig. 6.  The measured porosity of 

the stone was np = 0.5 for S and OS test series.  The same value of np is used for O and D' test 

series.  The maximum downward seepage velocity wm estimated using Eq. (125) along with Eq. 

(119) and ν = 0.01 cm
2
/s is in the range of 4.4 to 14.3 cm/s.  The still water level S, root-mean-

square wave height Hrms, and spectral peak period Tp measured at the offshore boundary x = 0 for 

each test are specified as input to the numerical model.    

 

Initially, the downward momentum flux was neglected in Eq. (116), corresponding to 0mα = in 

the present numerical model.  The computed wave overtopping rates for 0mα = were too large 

by one order of magnitude probably because the permeable layer above SWL may not be 

saturated and accept larger fluxes of water volume and momentum.  The empirical formula 

developed using the 52 tests was expressed as  

 

0.3

50

b p

m

n

z z

D
α α

− 
=  

 
 (140) 

where the constant α is the same as α = 2 in Eq. (129) and ( ) 50/
b p n

z z D− is the local thickness of 

the permeable layer normalized by the nominal stone diameter.  This thickness correction 

reduces the computed oq for S and OS test series with 50/ 4.1a nt D = .  For O and D' test series, 

mσ α≃ on the permeable layer.  Eq. (140) ensures 0mα = in the zone of 
b pz z= and no 

permeable layer.  The measured and computed wave overtopping rates oq  were compared for O, 

S, OS and D' test series.  The wave overtopping probability oP  was measured for O and D' test 

series.  The agreement for oq  and oP  was mostly within the factor of about 2. 
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For D' test series, van Gent (2002b) measured the water depth and velocity at five points for each 

test.  Points P1 and P2 were located at the seaward and landward ends of the crest, respectively.  

Points P3, P4 and P5 were located on the landward slope at elevations of 10, 25 and 40 cm, 

respectively, below the crest.  The measured water depth and velocity at each point were 

analyzed on the basis of individual wave overtopping events.  The values tabulated in his report 

were the water depth h2%, velocity U2%, and discharge q2% corresponding to the values exceeded 

by 2% of the incident 1,000 waves.   

 

For the probability density function ( )f h  given by Eq. (126), the water depth eh  corresponding 

to the exceedance probability e  is given by 

 ln forw
e w

w

h P
h P e

P e

 
= > 

 
 (141) 

Using Eq. (129), the water velocity eU  and discharge eq  corresponding to the exceedance 

probability e  are expressed as  

 ;e e s e e eU gh U q h Uα= + =  (142) 

The probability e  of eh h>  at given x  is not directly related to the probability based on 

individual overtopping events.  The probability 2% used by van Gent (2002b) is assumed to 

correspond to the range of e  = 0.01 – 0.02 where Eq. (141) is not very sensitive to e  = 0.01 – 

0.02 as long as the wet probability wP  is larger than about 0.1.  The computed values of ,e eh U  

and eq  in CSHORE2009 are based on e  = 0.01 where use is made of /1.1we P=  if 0.011wP <  

so that ( )/ 1.1wP e ≥  in Eq. (141).  Farhadzadeh et al. (2009) compared the measured and 

computed values of 2%h , 2%U  and 2%q  , respectively, at the five points P1 to P5 for D' test series.  
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The agreement was mostly within the factor of 2 but the hydrodynamic variables in the wet and 

dry zone are difficult to predict accurately due to the small water depth and larger velocity during 

intermittent wave overtopping. 

 

9.2  Stone Movement  

The sediment transport model for the impermeable sand beach in Sections 5 and 8.2  is modified 

to predict the movement of stone armor units on a coastal structure.  The probability bP  of stone 

movement under the Gaussian velocity U  in the wet zone is estimated assuming that the stone 

movement occurs when the absolute value of the instantaneous velocity U  exceeds the critical 

velocity cbU  estimated as 

 ( )
0.5

501cb c nU N g s D = −   (143) 

where s  and 50nD  = specific gravity and nominal diameter of the stone; and cN  = empirical 

parameter.  If the wave height cH  corresponding to bcU  is given by 2 /c bcH U g= , Eq. (143) 

yields ( ) 50/ 1
c c n

N H s D = −   and cN  may be regarded as the critical stability number for the 

stone which is of the order of unity (Kobayashi et al. 2003).  Eq. (49) is based on the critical 

Shields parameter 0.05cΨ =  for the initiation of sand movement.  The two parameters are 

related by 2 /c c bN f= Ψ  and Eq. (49) for the probability bP  is applicable using 0.5c b cf NΨ = .  

Eq. (143) is adopted here and cN  is calibrated as cN  = 0.7 using the damage progression tests of 

a stone structure with s  = 2.66 and 50nD  = 3.64 cm conducted by Melby and Kobayashi (1998).  

The probability of stone suspension is estimated using Eq. (50) where the stone fall velocity 
fw  

is estimated using ( )
0.5

501.8 1f nw g s D = −   for a sphere (e.g., Jiménez and Madsen 2003).  For 
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the stone with s  = 2.66 and 50nD  = 3.64 cm, 
fw  = 1.4 m/s and the computed probability of 

suspension of this stone is essentially zero.  The stone armor units are assumed to move like 

bedload particles, although CSHORE2009 also computes the suspended stone transport rate 

using the formulas developed for sand. 

 

The probability bP  of stone movement in the wet and dry zone is obtained for the probability 

distribution of U  based on Eqs. (126) and (129).  The probability bP  of stone movement is 

assumed to be the same as the probability of cbU U>  with cbU  given by Eq. (143).  Then, bP  is 

given by Eqs. (105) – (107). 

 

The time-averaged volumetric rate bq  of stone transport is estimated using the formula for 

bedload given by Eq. (114) which is modified as  

 ( )3

50

/ 1 ; 1

m

b p

bx b s r U r

n

z z
q bP G B g s B

D
σ

− 
 = − = ≤  

 
 (144) 

where b  = bedload parameter specified as b = 0.002 as discussed below Eq. (57); sG  = function 

of the bottom slope given by Eqs. (58) and (59); rB  = reduction factor due to limited stone 

availability; m = empirical parameter; and Uσ  = velocity standard deviation representing the 

wave action on the stone.  The rate bxq  becomes negative (offshore) on the steep slope with 

0sG < .   The reduction factor rB  is added in CSHORE2009 to account for the thickness 

( )b p
z z−  of the stone layer where 1rB =  if ( ) 50b p n

z z D− >  and 0rB =  in the zone of 
b pz z=  

and no stone.  The computed profile changes are found to be insensitive to the parameter m in the 
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range of 0.5 to 2.0.  The value of m = 1.0 is specified in CSHORE2009.  The rate bxq  of stone 

transport in the wet and dry zone is also estimated using Eq. (144) where the parameter b  is 

chosen so that the values of bxq  computed for the two different zones are the same at the still 

water shoreline located at SWLx x= .  The computed cross-shore variations of bxq  in the two zones 

are averaged in the overlapping zone of SWL rx x x≤ ≤  for the smooth transition between the two 

zones.  The temporal change of the bottom elevation bz  is computed using the conservation 

equation of stone volume in the same way as in Section 8.2.   

 

Farhadzadeh et al. (2009) compared the numerical model with the three damage progression tests 

by Melby and Kobayashi (1998).  The armor stone was placed in a traditional two-layer 

thickness with the seaward slope of 1/2.  The armor stone was characterized by 50nD =  3.64 cm, 

s  = 2.66 and 
pn = 0.4 where the maximum seepage velocity was mw  = 8.7 cm/s using Eq. (125).  

The thickness of the armor layer was 7.3 cm.  The test duration was in the range of 8.5 to 28.5 h.   

The numerical model overpredicted the deposited area below SWL at the end of the test mostly 

because it does not account for discrete stone units dislodged and deposited at a distance seaward 

of the toe of the damaged armor layer.  The eroded area above SWL was predicted better.  The 

temporal variation of the eroded area eA  was compared using damage eS
 

defined as 

2

50/e e nS A D= .  The numerical model predicted the damage progression well partly because the 

critical stability number cN  introduced in Eq. (143) was calibrated to be cN  = 0.7 for the three 

damage progression tests.  The temporal variations of eS  computed for cN  = 0.7 and 0.6 were 

fairly sensitive to cN .  The simple criterion of stone movement based on Eq. (143) may be 

improved so as to predict the damage progression more accurately.   
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10.  Computer Program CSHORE2009 

The computer program CSHORE2009 is explained sufficiently so that users will be able to use it 

effectively and modify it if necessary.  CSHORE2009 provides various options but only certain 

combinations of the options have been applied and verified in the publications in Section 2.  

Enough explanations are provided in the computer program so that users will be able to follow 

the computer program with additional explanations provided in the following.  It is noted that the 

symbols used in this section are based on those used in the computer program rather than those 

used in the previous sections. 

 

10.1  Main program 

The wave action equations (36) and (63), the momentum equations (22) and (23), and the roller 

energy equation (41) and the equations (101), (104), (136) and (138) for the mean water depth h  

in the wet and dry zone are solved using the finite-difference method with constant nodal spacing 

x∆  of a sufficient resolution in very small water depth.  The use of constant small x∆  may be 

justified because CSHORE is very efficient computationally and the use of constant x∆  reduces 

the input preparation time.  It is noted that the governing equations (22), (23), (36), (41) and (63) 

divided by gρ  are solved in the main program so that the fluid density ρ  does not appear in the 

resulting equations. 

 

The differential equations solved numerically can be expressed in the form 
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 ( ),
dy

f x y
dx

=  

where x  = cross-shore coordinate, positive onshore; y  = unknown variable that needs to be 

computed; and f  = known function of x  and y .  The computation marches landward from the 

given x to the next nodal location at ( )x x+ ∆ .  An improved Euler method of second-order 

accuracy (e.g., Chaudhry 1993) is used to approximate the above equation as follows: 

 

( )

( ) ( )

*

1

*

1 1 1

Predictor: ,

1
Corrector: , ,

2

j j j j

j j j j j j

y y f x y x

y y f x y f x y x

+

+ + +

= + ∆

 = + + ∆ 

  

where the subscripts j  and ( )1j +  indicate the nodes located at 
j

x  and ( )1j j
x x x+ = + ∆  and the 

superscript star denotes a temporary value of 1j
y +  at node ( )1j + .  The wave action equation 

(36) or (63) for the free surface standard deviation ησ , the cross-shore momentum equation (22) 

for the wave setup η , and the roller equation (41) for the roller volume flux 
r

q  are solved using 

this Euler method.  On the other hand, the longshore momentum equation (23) is approximated 

by an implicit finite-difference method, which is more stable numerically, to obtain the 

longshore bottom shear stress 
by

τ  at node ( )1j +  and the corresponding longshore current V  at 

node ( )1j + .   

 

In reality, the four unknown values of , ,Vησ η  and 
r

q at node ( )1j +  involved in the four 

differential equations are computed in sequence and iteratively.  The mean water depth h  given 

by Eq. (1) is uniquely related to the wave setup η  for the given storm tide S  and bottom 

elevation 
b

z .  The convergence of the iteration is based on the difference between the computed 
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and guessed values where the metric units are used in the computer program and the 

gravitational acceleration g  = 9.81 m/s
2
.  The difference for ησ (m), h (m), and V (m/s) must be 

less than EPS1, whereas the difference for 
r

q  (m
2
/s) must be less than EPS2.  The maximum 

number of the iteration is MAXITE.  The DATA statement in the main program  specifies 

EPS1=10
-3

, EPS2=10
-6

 and MAXITE=20 where double precision is used in the entire program.  

It is noted that 
r

q  involves the product of the length and velocity. 

 

The only input in the main program is as follows: 

   WRITE(*,*) ‘Name of Primary Input-Data-File?’ 

C   READ(*,5000) FINMIN 

   FINMIN = ‘infile’ 

 5000  FORMAT(A12) 

where FINMIN corresponds to the name of the input file which will be read later before the 

computation.  In order to eliminate this input, the name of the input file is specified as infile in 

CSHORE. 

 

10.2  Subroutines 

Subroutines are arranged in numerical order after the main program in order to indicate the 

location of each subroutine in the computer program.  The numerical order approximately 

corresponds to the chronology of the CSHORE development summarized in Section 2. 

 

Subroutine 1 OPENER opens all input and output files.  The input file with its name = FINMIN 

is assigned to unit=11 for the READ statement.  The names of the output files start with the letter 
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O.  The output file ODOC (unit=20 for the WRITE statement) is used to store the input (to check 

the accuracy of the input file) and the summary of the computed results (to check the overall 

appropriateness of the computed results and to compare with measurements such as wave runup 

and overtopping rates).  The output file OMESSG (unit=40) stores warning and error messages 

generated during the computation.  These messages must be examined carefully if the computed 

results appear questionable.  The other output files are explained in Section 10.4. 

 

Subroutine 2 INPUT reads the contents of the input file FINMIN as explained in detail in section 

10.3.  The gravitational acceleration g  is specified as GRAV=9.81 m/s
2
 in the DATA statement. 

 

Subroutine 3 BOTTOM calculated the bottom elevation ( )b j
z x  with ( )1jx j x= − ∆  at node j  

using the input bottom elevations specified at a number of cross-shore locations.  The nodal 

spacing x∆  is read from the input file.  Use is made of linear interpolation and smoothing to 

reduce sharp corners that tend to cause numerical irregularity.  This subroutine also computes the 

integer JMAX which is the number of total nodes along the bottom in the computation domain as 

well as the cross-shore bottom slope 
bx

S  of the smoothed 
b

z .  If the bottom is permeable or the 

sediment layer thickness is thin, the lower impermeable boundary elevation 
p

z  of the permeable 

or thin sediment layer (see Figs. 2 and 6) is calculated in the same way as 
b

z .  The thickness 
p

h  

of the layer is obtained using ( ) 0
p b p

h z z= − ≥ .   For the permeable layer, ph  is the thickness of 

porous flow.  For the thin sediment layer,  ph  is the available deposited sediment volume per 

unit horizontal area. 
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Subroutine 4 PARAM computes constant parameters before the landward marching 

computation.  Eqs. (65) and (66) are used to compute the values of 1,
p

α β  and 2β  using the 

default values of ν  = 10
-6

 m
2
/s, 0α  = 1000 and 0β  = 5.  The default value of 2α =  in Eq. (92)

for the wet and dry zone is specified and the value of B  defined in Eq. (97) and other constant 

parameters are calculated.  The exceedance probability e = EWD introduced in Eq. (141) 

specified as 0.015 for an impermeable bottom and 0.01 for a permeable bottom on the basis of 

the comparison with the data by Van Gent (2002b).  

 

Subroutine 5 LWAVE solves the dispersion relation for linear waves given by Eq. (2) which is 

rewritten in terms of x kh=  

 

2

2
1 coth( ) 0

2

pT Q
x D x x

hπ

 
− − = 

 
 

with 

 ; cos sino x yD k h Q Q Qθ θ= = +  

where 
p

T  = representative wave period at 0x =  specified as input; h  = mean water depth at 

given node; 
o

k  = deep water wave number given by ( ) ( )2 22 /
o p

k gTπ=  calculated in subroutine 

4 PARAM or at the end of the main program if additional wave conditions are specified as input 

at the seaward boundary 0x = .  The above equation is solved using the Newton-Raphson 

method (e.g., Press et al. 1989).  After the wave number /k x h=  is obtained, the linear wave 

quantities such as those defined in Eq. (3) are computed and the wave angle θ  for obliquely 

incident waves is calculated using Eq. (21).  CSHORE provides the option of IWCINT=0 or 1.  

IWCINT=0 corresponds to the case of no wave and current interaction, which was assumed in 
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the earlier version of CSHORE developed for the condition of no or little wave overtopping.  

IWCINT=1 corresponds to the present version of CSHORE which allows considerable wave 

overtopping and overflow.  If IWCINT=0, the terms involving 
x

Q  and 
y

Q  in Eqs. (2), (22), (23) 

and (36), and (63) are neglected and 0Q =  in the above equation for x kh= . 

 

Subroutine 6 GBXAGF computes 
bx

G  and 
f

G  using the approximate equations (46) and (48) 

for obliquely incident waves and the exact equations given by Kobayashi et al. (2007b) for 

normally incident waves.  The complementary error function erfc  involved in the exact 

equations is computed using Function ERFCC given by Press et al. (1989).  Subroutine 6 

VSTGBY computes * /
T

V V σ=  for known 
by

G  using Eq. (47).  The longshore momentum 

equation (23) is solved numerically to obtain 
by

τ  and the corresponding 
by

G  is calculated using 

Eq. (33). 

 

Subroutine 7 DBREAK computes the energy dissipation rate 
B

D  due to wave breaking using 

Eq. (38) and specifies the upper limit of unity for * / hησ σ=  in the wet zone of very shallow 

water.  The other limit of *σ  introduced for irregular wave transmission over submerged porous 

breakwaters by Kobayashi et al. (2007b) has been found to be unnecessary for the other 

applications of CSHORE discussed in Section 2.  An option is provided for estimating the 

breaker ratio parameter γ  in Eq.(38) using the empirical formula proposed by Apotsos et al. 

(2008).  This option is adopted if the input value of   γ  is negative. 
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Subroutine 8 OUTPUT stores most of the computed results in the output files as explained in 

detail in Section 10.4. 

 

Subroutine 9 POFLOW computes the standard deviation 
p

σ  of the discharged velocity in a 

permeable layer using Eq. (72), the mean cross-shore discharge velocity pU  using Eq. (70), and 

the energy dissipation rate 
p

D  due to flow resistance in the permeable layer using Eq. (68).  

CSHORE provides the option of IPERM = 0 or 1.  IPERM=0 implies an impermeable bottom 

and this subroutine is not called from the main program.  IPERM=1 implies that a permeable 

layer exists in the computation domain where the permeable layer thickness 0
p

h =  for 

impermeable segments. 

 

Subroutine 10 QORATE is called from the main program after the landward marching 

computation in the wet zone if the option of IOVER=1 is specified as input to allow wave 

overtopping and overwash in the computation domain.  No wave overtopping is allowed if 

IOVER=0 and the wave overtopping rate 0
o

q = in Eqs. (19) and (62).  The wave overtopping 

rate 
o

q  is obtained by calling subroutine 16 WETDRY.  After the convergence of repeated 

landward computations to obtain 
o

q , the quantities related to wave runup are computed using the 

equations in Section 7.  Eqs. (141) and (142) are used to compute ,e eh U  and eq  corresponding 

to the specified exceedance probability e. 

 

Subroutine 11 SEDTRA computes the sediment transport quantities in the wet zone using the 

equations in Section 5 after the landward marching computation of the hydrodynamic quantities 
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is completed.  This subroutine is called from the main program only for the option of 

IPROFL=1, corresponding to a movable bottom.  For a fixed bottom, IPROFL=0 must be 

specified as input.  The computation is performed separately for normally incident waves 

(integer IANGLE=0) and for obliquely incident waves (IANGLE=1) partly because of the 

CSHORE development history discussed in Section 2 and partly because of no longshore 

sediment transport for IANGLE=0.  The sediment transport quantities in the wet and dry zone 

are computed using the equations in Sections 8.2 and 9.2 only for IANGLE=0 and IOVER=1. 

 

Subroutine 12 CHANGE computes the bottom elevation change from the present time level to 

the next time level using Eq. (61) with / 0
y

q y∂ ∂ = .  The finite difference equations for the 

profile change computation given by Tega and Kobayashi (1999) are of second-order accuracy.  

The time step t∆  for the profile change computation is computed using the numerical stability 

criterion of the adopted explicit finite difference method.  The profile change is computed if 

IPROFL=1. 

 

Subroutine 13 INTGRL integrates a function numerically using a modified Simpson’s rule (e.g., 

Press et al. 1989).  This subroutine is used in Subroutine CHANGE to ensure that the computed 

profile change satisfies the conservation of the sediment volume in the entire computation 

domain. 

 

Subroutine 14 SMOOTH smoothes the cross-shore variation of a variable that depends on x .  

Simple moving averaging is performed using NPT nodes landward and seaward of a specified 

node.  NPT=0 corresponds to no smoothing.  The smoothing of certain variables reduces sudden 
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changes and improves numerical stability.  Some variables are smoothed before their storage and 

plotting.  The value of NPT is calculated in Subroutine 03 BOTTOM before the computation and 

at the end of Main Program during the computation.  The calculated value of NPT increases with 

the ratio between the input wave height and the nodal spacing x∆  so that the smoothing distance 

is more related to the input root-mean-square wave height. 

 

Subroutine 15 EXTRAPO called from Subroutine SEDTRA is used to extrapolate a finite 

sediment transport rate at the landward end node of the computation to zero transport rate on the 

landward dry zone after the introduction of the scarping algorithm given by Eq. (60).  The 

number of nodes for the extrapolation is specified by NPE.  The value of NPE is calculated in a 

manner similar to the calculation of NPT.  If wave overwash is allowed by choosing the option 

IOVER=1, this subroutine is not used. 

 

Subroutine 16 WETDRY computes the hydrodynamic quantities including the wave 

overtopping rate oq  in the wet and dry zone using the equations in Sections 8.1 and 9.1.  

Function GBWD following this subroutine computes the value of ( )
b

G r  for given r  using Eqs. 

(98) and (99). 

 

Subroutine 17 TRANWD called from the main program and subroutine SEDTRA connects the 

computed values by the wet model and the wet and dry model in the overlapping zone (see Figs. 

5 and 6) because the transition between the two different models is somewhat artificial.  The 

overlapping zone and transition algorithm are discussed at the end of Sections 8.1 and 9.1. 
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Subroutine 18 PROBWD computes the probabilities of sediment movement and suspension 

using Eqs. (105), (106) and (107) as well as Eqs. (108), (109) and (110) where only the critical 

fluid velocities 
cb

U  and 
cs

U  are different in these equations.   

 

Subroutine 19 TSMOTH converts time series stored at arbitrary time levels in Main Program to 

smoothed time series with a constant time interval.  This subroutine is created to store the 

computed wave overtopping rate  oq  and the computed bedload transport rate bxq  and suspended 

sediment transport rate sxq  at the landward end node JMAX if IPROFL=1 and IOVER=1.  The 

time step t∆  for the profile change computation using Eq. (61) is not constant and the time series 

are stored at the time level of the profile change computation.  The stored values of ,o bxq q  and 

sxq  in the zone of the very small water depth can be noisy and smoothed. 

 

Subroutine 20 TSINTP interpolates time series specified at given time levels, obtains 

interpolated time series at different time levels, and converts interpolated time series into time 

series with stepped temporal changes.  This subroutine is created in relation to the option of 

ILAB=0 or 1 in Subroutine 02 INPUT.  For ILAB=0 corresponding to typical field data, the time 

series of the input wave parameters and water levels have different time intervals and are read 

separately as explained in Section 10.3. 

 

10.3  Input 

A user of CSHORE must read Subroutine 2 INPUT and learn how to prepare the primary input 

data file.  Input parameters and variables are read using the FORMAT statements at the end of 

Subroutine INPUT.  A user must follow the FORMAT requirements so that a correct input value 
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is assigned to the specific input parameter or variable.  This requirement may not be convenient 

but the resulting input file is orderly and can be checked easily.  In the following, the input 

parameters and variables are explained in the sequence described in Subroutine INPUT. 

 

• NLINES is the number of lines used to identify a specific input file because a number of input 

files can become large when CSHORE is compared with a number of data sets with different 

bottom profiles. 

 

• (COMMEN(J), J=1, 14) read for NLINES lines contains the description of the input file.  The 

comments in these lines do not affect the computed results at all. 

 

• IPROFL = 0 or 1 for a fixed or movable bottom where the profile evolution is computed for 

IPROFL=1. 

 

• ISEDAV=0 or 1 for unlimited or limited sediment availability.  ISEDAV=0 is already 

specified if IPROFL=0.  If IPROFL=1, ISEDAV=0 or 1 must be specified.  The option of 

ISEDAV=1 has been used only for stone movement in Section 9.2 so far. 

 

• IPERM = 0 or 1 for an impermeable or permeable bottom where the parameters for the 

permeable layer must be specified later if IPERM=1. 

 

• IOVER = 0 or 1 for no wave overtopping or wave overtopping at the landward end of the 

computation domain where wave overwash and dune profile evolution are computed if 

IOVER=1 and IPROFL=1. 
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• IWTRAN=0 or 1 for no standing water or wave transmission in a bay or lagoon landward of 

an emerged dune or coastal structure.  IWTRAN=0 is already specified if IOVER=0.  If 

IOVER=1, IWTRAN=0 or 1 must be specified.  The option of IWTRAN=1 has not been used 

so far. 

 

• IWCINT = 0 or 1 for no or yes for wave and current interactions where the terms involving 

x
Q  and 

y
Q  in Eqs. (2), (22), (23), (36) and (63) for the wet zone are neglected if IWCINT=0.  

Wave and current interactions are not negligible if the current velocity becomes as large as the 

wave phase velocity C .  The effect of wave overtopping on the hydrodynamics in the wet and 

dry zone is included in the models in Sections 8.1 and 9.1. 

 

• IROLL = 0 or 1 for no or yes for roller effects in the wet zone where the roller volume flux 

0
r

q =  and 
r B

D D=  in Eq. (41) for IROLL=0.  The option IROLL=1 improves the prediction 

of longshore current on a beach and dune erosion but the roller effects have found to be 

negligible for coastal structures with steeper slopes, perhaps because of the limited horizontal 

distance for roller development.  The roller effect in the wet and dry zone may have been 

included implicitly because of the use of Eq. (92). 

 

• IWIND = 0 or 1 for no or yes for wind effects where the wind stresses 
sx

τ  and 
sy

τ  on the sea 

surface are neglected in Eqs. (22) and (23) if IWIND=0.  The wind effect is normally small 

unless the computation domain becomes large. 
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• DX = constant nodal spacing ( )x m∆ .  The value of /sx x∆  with 
s

x  = cross-shore distance 

between the seaward boundary 0x =  and the shoreline located at the bottom elevation 0
b

z =  

was of the order of 1,000 for the previous computations.  The values of x∆  were of the order 

of 0.01 m and 1.0 m for laboratory and field data, respectively.  The integer NN in the 

PARAMETER statement specifies the maximum number of nodes allowed in the computation 

domain.  The default value of NN = 200,000 should be sufficient for any CSHORE 

computation. 

 

• GAMMA = empirical breaker ratio parameter γ  in Eq. (38) where the range of γ  = 0.5 – 1.0 

has been used to adjust the computed cross-shore variation of the wave height in comparison 

with the measured wave height variation.  If no wave height data is available, use may be 

made of γ  = 0.7 or 0.8.  Alternatively, the empirical formula proposed by Apotsos et al. 

(2008) may be used for  natural beaches but this formula has not been verified yet for the 

prediction of morphological changes. 

 

• D50, WF and SG = median sediment diameter 50d  (mm) which is immediately converted to 

( )50d m , sediment fall velocity 
f

w  (m/s), and sediment specific gravity s  if IPROFL=1.  The 

default values for the sediment in subroutine INPUT are the sediment porosity SPORO = 
p

n  = 

0.4 in Eq. (61), the critical Shields parameter 
c

ψ  = 0.05 for Eq. (49), the critical stability 

number cN  = 0.7 in Eq. (143), the critical sediment diameter CSEDIA=0.01 (m) used for the 

movement initiation of sand ( cψ = 0.05 if D50 < CSEDIA) and stone ( cN  = 0.7 if D50 ≥  
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CSEDIA) and the parameter BEDLM = m = 1.0 in Eq. (144) for bedload reduction due to 

limited availability. 

 

• EFFB, EFFF, SLP, SLPOT = suspension efficiency Be  due to wave breaking in Eq. (51), 

suspension efficiency fe  due to bottom friction in Eq. (51), suspended load parameter a  in 

Eq. (52), and suspended load parameter oa  associated with the wave overtopping rate oq  in 

Eq. (113).  These input parameters are required only if IPROFL=1.  The input of SLPOT = oa  

is required only if IOVER=1.  The calibrated ranges of these parameters are Be  = 0.002 – 0.01 

(typically 0.005), fe  = 0.01 (fixed in the previous calibrations), a  =  0.1 – 0.4 (typically 0.2), 

and oa  = 0.1 – 2.8 (typically 0.5 but calibrated only for limited wave overwash data).  It is 

required that B fe e<  because the turbulence generated by wave breaking decays downward 

before it suspends bottom sediment. 

 

• TANPHI, BLP = sediment limiting (maximum) slope tanφ  in Eqs. (52), (58) and (59), and 

bedload parameter b  in Eqs. (56) and (57) if IPROFL=1.  These parameters related to bedload 

have been calibrated in the range of tanφ  = 0.63 (fixed in the previous calibrations) and b  = 

0.001 – 0.004 (typically 0.002). 
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• RWH = runup wire height ( )
r

mδ  shown in Fig. 3 only if IOVER=1.  If no runup wire is 

deployed to measure irregular wave runup, use may be made of 
r

δ  = 0.02 m for small-scale 

experiments and 
r

δ  = 0.1 m for prototype beaches and structures.  The range of  
r

δ  = 0.01 – 

0.1 m is realistic for a runup wire placed above a slope. 

 

• SNP and SDP = porosity 
p

n  and nominal diameter 50 ( )
n

D m  of stone used in Eqs. (65), (66) 

and (119) only if IPERM=1 and a permeable layer is constructed of stone.  The maximum 

seepage velocity WPM = mw  is computed using Eq. (125).  If other materials are used for 

slope protection, formulas corresponding to Eqs. (65), (66) and (119) will need to be 

developed.  If IPROFL=1 and IPERM=1, SNP=SPORO and SDP=D50 where SDP(m) and 

D50 (mm) are read as input. 

 

• ILAB=0 or 1 for reading the input wave and water level data separately or together where 

ILAB=1 for laboratory experiments in which offshore waves and water level are normally 

measured simultaneously. 

 

• NWAVE = number of waves at the seaward boundary 0x = .  If IPROFL=0 and the bottom is 

fixed, NWAVE is the number of different waves at 0x =  examined for this specific fixed 

bottom.  If IPROFL=1 and the bottom profile evolves from the specified initial profile, 

NWAVE is the number of sequential waves at 0x =  during the profile evolution starting from 

the morphological time 0t = .  It is noted that NWAVE must not exceed the integer NB in the 

PARAMETER Statement where NB=30,000 is specified. 
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• NSURG = number of water levels at the seaward boundary 0x = .  NSURG must be equal to 

NWAVE if ILAB=1. 

 

• TIMEBC(I+1), TPBC(I), HRMSBC(I), WSETBC(I), SWLBC(I), WANGBC(I) for I=1,2,…,  

NTIME only if ILAB=1 where NTIME = NWAVE = NSURG 

TIMEBC(I+1) = morphological time in seconds at the end of the I-th wave and water level 

during the profile evolution starting from TIMEBC(1) = 0.0.  The wave conditions and 

water level during TIMEBC(I) to TIMEBC(I+1) are assumed to be constant and NTIME 

is the number of constant wave conditions and water level.  For IPROFL=0, 

TIMEBC(I+1) = 1.0, 2.0, …, NTIME may be used to identify the sequence of the waves 

and water levels at 0x =  used for the computation. 

TPBC(I) = spectral peak period 
p

T (s) used to represent the I-th irregular wave period at 

0x =  but any representative wave period can be specified. 

HRMSBC(I) = root-mean-square wave height 8 ( )rmsH mησ=  used to represent the I-th 

irregular wave height at 0x = .  If the spectral significant wave height 
mo

H  is known, the 

corresponding 
rms

H  may be obtained using / 2
rms mo

H H= . 

WSETBC(I) = wave setup (positive) or set-down (negative) ( )mη  at 0x =  relative to the 

still water level (SWL).  If η  is not measured, use may be made of η  = 0.0 at 0x =  as 

long as the seaward boundary 0x =  is located outside the surf zone. 

SWLBC(I) = still water level S  (m) above the datum 0z =  as shown in Fig. 2.  This value 

of S  corresponds to storm tide (sum of storm surge and tide) during the I-th wave 

conditions. 
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WANGBC(I) = incident wave angle θ  in degrees at 0x =  for the I-th wave conditions (see 

Fig. 1 for the definition of θ ).  The angle is limited to the range of θ  = − 80° to 80° 

because the formula for 
B

D  given by Eq. (38) was originally developed for normally 

incident waves and may not be valid for large incident wave angles.  IANGLE=0 or 1 is 

used to indicate normally or obliquely incident waves in the computer program. 

 

If ILAB=0, NWAVE and NSURG are different and NTIME is taken as the larger value of 

NWAVE and NSURG.  For ILAB=0 corresponding to field data, offshore wave conditions and 

water level at 0x =  are assumed to change continuously unlike laboratory wave conditions and 

water level that are normally varied in steps.  After the offshore wave data and the water level 

data are read separately, Subroutine 20 TSINTP is called to create the stepped time series 

corresponding to ILAB=1. 

 

• TWAVE(I), TPIN(I), HRMSIN(I), WANGIN(I) for I=1, 2, …, (NWAVE+1) only for 

ILAB=0 where  

 TWAVE(I) = time (s) of the I-th wave data where TWAVE(1)=0.0.   

 TPIN(I) = spectral peak period pT  (s) at time = TWAVE(I).   

 HRMSIN(I) = root-mean-square wave height rmsH  (m) at time = TWAVE(I). 

 WANGIN(I) = incident wave angle θ  in degrees at time = TWAVE(I). 

The wave setup or set-down η  at 0x =  is assumed to be zero for field data. 
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• TSURG(I), SWLIN(I) for I=1,2,…, (NSURG+1) only for ILAB=0 where 

 TSURGE(I) = time (s) for the I-th water level where TSURG(1) = 0.0. 

 SWLIN(I) = water level S  (m) above 0z =  at time = TSURG(I). 

It is required that TWAVE (NWAVE+1) = TSURG (NSURG+1) because the durations of the 

wave data and water level data must be the same.  

 

• NBINP = number of points used to describe the input bottom geometry ( )bz x  which is the 

initial profile if IPROFL=1.  The bottom geometry is divided into linear segments of different 

inclination and roughness starting from the seaward boundary 0x = .  It is noted that NBINP 

must not exceed NB = 30,000 in the PARAMETER statement. 

 

• NPINP = number of points used to describe the input impermeable fixed boundary ( )pz x  

only if IPERM=1 or ISEDAV=1 in the same was as ( )bz x . 

 

• XBINP(1) and ZBINP(1) = values (m) of x  and z  of the bottom point at the seaward 

boundary in the coordinate system ( ),x z  shown in Fig. 2 where XBINP(1) = 0.0 at the 

seaward boundary  and the water depth below the datum 0z =  is given by − ZBINP(1).  If 

IPERM=1 or ISEDAV=1, XPINP(1) = 0.0 and ZPINP(1) = ZBINP(1) are specified in the 

program because the thickness of a permeable layer or sediment layer is assumed to be zero at 

the seaward boundary where ( )bz x  at 0x =  is fixed for the profile evolution computation for 

IPROFL=1. 
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• XBINP(J), ZBINP(J) and FBINP(J-1) for J=2,3,…,NBINP where  

    XBINP(J) = horizontal (landward) distance (m) of the input bottom point J from the seaward   

boundary 0x =  with the distance XBINP(J) increasing with the increase of the integer J. 

    ZBINP(J) = bottom elevation ( )
b

z m of the point J.  If the point J is below the datum 0z = , 

ZBINP(J) is negative and − ZBINP(J) is the water depth below the datum.  If the point J is 

above the datum, ZBINP(J) is positive and corresponds to the bottom elevation of the point J 

above the datum. 

   FBINP(J-1) = bottom friction factor 
b

f  of the linear segment between the bottom points (J−1) 

and J.  The bottom friction factor can be varied to account for the cross-shore variation of 

bottom roughness as shown in Fig. 2. 

 

• XPINP(J), ZPINP(J) for J=2,3,…,NPINP only for IPERM=1 or ISEDAV=1 where  

XPINP(J) = value (m) of the x-coordinate of ( )pz x  at the point J. 

 ZPINP(J) = value (m) of the z -coordinate of ( )
p

z x  of the point J.  The vertical thickness of 

the permeable or sediment layer is given by ( )p b p
h z z= − .  If ( )

p
z x  includes a vertical step or 

wall, it should be replaced by a steep slope. 

 

• NWIND = number of data points in the time series of wind speed and direction data only if 

IWIND=1 where the wind data is read in the same way as the wave and water level data for 

ILAB=0. 
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• TWIND(I), WIND10(I), WINDAN(I) for I=1,2,…, (NWIND+1) only for IWIND=1 where 

 TWIND(I) = time (s) for the I-th wind data where TWIND(1) = 0.0 and TWIND (NWIND+1) 

must be the same as the end time of the wave and water level data. 

 WIND10(I) = wind speed 10W (m/s) at the elevation of 10 m above the sea surface at time = 

TWIND(I). 

 WINDAN(I) = wind direction wθ  in degrees (see Fig. 1) at time = TWIND(I). 

After the wind data is read, Subroutine 20 TSINTP is called to create the stepped time series 

corresponding to ILAB=1. 

 

The following input is required only for the option of IWTRAN=1 which assumes that a bay or 

lagoon exists landward of an emerged dune or coastal structure. 

• ISWLSL=0 or 1 for the same or different still water levels on the seaward and landward sides.  

If ISWLSL=0, no additional input is required because the landward still water level is taken  as 

the seaward still water level specified at the seaward boundary 0x = . 

• NSLAN = number of data points in the time series of the landward still water level only if 

ISWLSL=1. 

• TSLAND(I), SLANIN(I) for I=1,2,…, (NSLAN+1) only if ISWLSL=1 where 

TSLAND(I) = time (s) for the I-th water level data where 

TSLAND(1) = 0.0 and TSLAND(NSLAN+1) must be the same as the end time of the wave 

and seaward water level data. 

SLANIN(I) = landward still water level (m) above the datum 0z =  at time = TSLAND(I). 
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After the water level data is read, Subroutine 20 TSINTP is called to create the stepped time 

series corresponding to ILAB=1. 

 

10.4  Output 

A user of CSHORE must examine the contents of the output file ODOC (unit=20 for the 

WRITE statement) to ensure that the input file has been prepared and read correctly.  The 

contents of this file created in Subroutine 8 OUTPUT and at the end of Subroutine 10 

QORATE if IOVER=1 are self-explanatory.  The notations that have not been explained 

previously are explained in the following. 

 

First, ODOC stores the input parameters and variables. 

RBZERO = lower limit of the wave-front slope 
r

β  in Eq. (10) where RBZERO = 0.1 specified 

in Subroutine 2 INPUT where this typical value has been used to reduce the number of 

calibration parameters. 

JCREST = crest node of the maximum bottom elevation for the input bottom profile ( )
b

z x .  If 

the crest is horizontal, JCREST corresponds to the landward end of the horizontal crest 

located at 
c

x x=  in Fig. 5.  If IPROFL=1, the nodal location of JCREST may change with the 

evolution of the bottom profile. 

RCREST = input bottom elevation (m) at the node JCREST corresponding to the maximum 

value of the input ( )
b

z x . 

AWD = parameter α  in Eq. (92) which expresses the  horizontal velocity U  as a function of the 

water depth h  in the wet and dry zone where 2α =  is specified in Subroutine 4 PARAM but 

this specified value could be calibrated if necessary. 
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EWD = exceedance probability e  used in Eq. (141) for the comparison with measured values 

corresponding to 2% of incident irregular waves where e  = EWD = 0.01 or 0.015 depending 

on IPERM=1 or 0 in Subroutine 4 PARAM. 

It is noted that JCREST, RCREST, AWD, and EWD are stored only if IOVER=1. 

 

Second, ODOC stores the computed quantities at time = TIMEBC(1)=0.0, TIMEBC(2)=,…, 

TIMEBC(NTIME+1) for ILAB=1.  For ILAB=0, the computed quantities are stored every ten 

storage time levels and at the first and last time levels.  The stored quantities of the ODOC file 

include 

JR = most landward node reached by the landward marching computation using the wet model in 

Section 4 if IPERM=0 and in Section 6 if IPERM=1. 

XR = x -coordinate (m) of the node JR where XR = 
r

x  shown in Fig. 5 for an emerged structure 

or beach. 

ZR = z -coordinate (m) of the node JR corresponding to the bottom elevation above the datum. 

H(JR) = mean water depth h  (m) at the node JR which must be very small for an emerged 

structure or beach if the landward marching computation does not encounter numerical 

difficulties. 

 

CSHORE estimates the wave reflection coefficient, assuming that the cross-shore wave energy 

flux 
x

F  defined in Eq. (37) is reflected from the node JSWL at the still water shoreline located at 

SWL
x x=  in Fig. 5 and propagates seaward if JR > JSWL (the landward marching computation 

has reached above the still water shoreline) and JSWL < JMAX with JMAX = most landward 
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node of the computation domain based on the input bottom geometry.  If JSWL = JMAX, the 

computation domain is submerged and some of the cross-shore wave energy flux is transmitted 

landward.  The wave reflection coefficient REFCOF is estimated as the ratio between 
ref

σ  and 

ησ  at 0x =  where 
ref

σ  is the free surface standard deviation due to the wave energy flux 

propagating seaward at 0x = .  The wave reflection coefficient is estimated only for IOVER=0 

because wave overtopping accompanies onshore wave energy flux.  The estimated wave 

reflection coefficient may not be very accurate (Kobayashi et al. 2005, 2007a) but is useful in 

assessing the applicability of CSHORE which neglects reflected waves in its governing 

equations. 

 

If IOVER=1, Subroutine OUTPUT calls Subroutine 10 QORATE with ICALL=1 to store the 

following quantities in the file ODOC: 

JWD = most seaward node of the landward marching computation in the wet and dry zone as 

explained in relation to Eq. (100). 

H1 = mean water depth 1( )h m  at the node JWD. 

JDRY = most landward node in the wet and dry zone which is less than and equal to the 

maximum node number JMAX in the computation domain. 

POTF = wave overtopping probability 
o

P  estimated using the wet probability 
c

P  at the node 

JCREST as explained below Eq. (102). 

QOTF = wave overtopping rate 2( / )
o

q m s above the bottom  computed using Eq. (102) for an 

impermeable bottom.  For a permeable bottom, QOTF=( o pq q− ) in Eq. (139). 
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QP = seepage rate 2( / )pq m s  calculated using  Eq. (121) at the node JCREST in Eq. (139).  The 

total overtopping rate is given by oq  = (QOTF + QP).  

ITEQO = number of iterations performed to compute the wave overtopping rate oq . 

 

In addition, the following quantities computed using the empirical equations for wave runup in 

Section 7 are stored in the file ODOC at the specified time levels: 

ERMEAN = mean shoreline elevation (m) above the datum 0z =  measured by the runup wire 

where ERMEAN = ( )r Sη +  and rη  given in Eq. (73) is the mean shoreline elevation above 

SWL. 

SIGRUN = standard deviation 
r

σ (m) of the shoreline oscillation measured by the runup wire 

where 
r

σ  is estimated using Eq. (73). 

R13 = significant runup height (m) above the datum 0z =  corresponding to ( )1/3R S+  where 

1/3R  above SWL is estimated using Eq. (75) or (84). 

R2P = runup height (m) above the datum 0z =  for the 2% exceedance probability where R2P = 

( )2%R S+  and 2%R  is given by Eq. (79). 

 

If IWTRAN=1 and the landward marching computation reaches the standing water in a bay or 

lagoon, the quantities related to wave transmission are stored in the file ODOC in Subrouting 

10 QORATE.  The nodes JSL and JMAX are the most seaward and landward  nodes, 

respectively, in the zone of the standing water.  The cross-shore locations of these nodes and 

the mean η  and standard deviation ησ  at these nodes are stored together with the wave 
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transmission coefficient defined as the ratio between ησ  at the node JMAX and ησ  at the 

seaward boundary 0x = . 

 

If IPROFL=1 and IANGLE=1 (obliquely incident waves), Subroutine OUTPUT integrates the 

sum of the longshore suspended sediment transport rate 
sy

q  (m
2
/s) and the longshore bedload 

transport rate 
by

q  (m
2
/s) from 0x =  to 

r
x x=  in the wet zone where 

sy
q  and 

by
q  are predicted 

using Eqs. (52) and (57), respectively.  The integrated total longshore sediment transport rate 

(m
3
/s) and the corresponding value of K  in the CERC formula (Coastal Engineering Manual 

2003) are stored in the file ODOC.  The breaker location is taken at the cross-shore location of 

the maximum root-mean-square wave height and the value of K  in the CERC formula is 

supposed to be of the order of 0.8. 

 

If IPROFL=1 and IPERM=1, the profile evolution of a permeable beach or structure is 

computed.  The computed bottom profile ( )bz x  at the given time t is compared with the initial 

bottom profile ( ) ( )i bz x z x=  at 0t = .  The eroded area eA  is defined as the area of 

( ) ( ) 0i bz x z x − >  .  The maximum vertical erosion depth ed  is defined at the maximum value 

of ( ) ( ) 0i bz x z x − >  .  The damage eS  is defined as 2

50/e e nS A D=  and the normalized erosion 

depth E is defined as 50/e nE d D=  where 50nD  is the nominal store or sediment diameter.  The 

stability number moN  is defined as ( ) 50/ 1mo mo nN H s D = −   where rms2moH H=  = spectral 

significant wave height at 0x =  and s =  specific gravity of the stone or sediment.  The values of 
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,eS E  and moN  are stored at the specified time levels in the ODOC file in Subroutine 8 

OUTPUT. 

 

The rest of the output files store the cross-shore variations of computed variables at the specified 

time levels TIMEBC(I) with I = 1, 2, …, (NTIME+1) for ILAB=1.  For ILAB=0, the cross-shore 

variations are stored every ten storage time levels and at the first and last time levels.  Each 

output file stores the number of nodes and the output time level immediately before the 

computed variables are stored at the given number of nodes.  This will facilitate displaying the 

computed variables using the output files.  It is noted that the CSHORE computer program does 

not contain any plotting routine. 

 

The file OBPROF (unit=21) contains the bottom profile variables at all the nodes with 

J=1,2,…,JMAX. 

XB(J) = cross-shore coordinate x (m) of node J where XB(J) = (J−1)* x∆  does not change with 

time. 

ZB(J) = vertical coordinate 
b

z (m) of the bottom elevation at the output time level where the 

bottom elevation evolves with time if IPROFL=1.  

ZP(J) = vertical coordinate 
p

z (m) of the lower boundary of the permeable layer only if 

IPERM=1 or ISEDAV=1 where 
p

z  has been assumed to be fixed.  

 

The file OSETUP (unit=22) stores the quantities related to the mean and standard deviation of 

the free surface elevation η  for nodes J=1,2,…,JR 

XB(J) = cross-shore coordinate x (m) of node J for the plotting convenience. 
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(H(J)+ZB(J)) = sum of the wave setup η (m) above SWL and storm tide S (m) above the datum 

at node J [see Eq. (1)]. 

H(J) = mean water depth h (m) at node J. 

SIGMA(J) = free surface standard deviation ησ (m) related to the root-mean-square wave height 

8rmsH ησ= . 

If IOVER=1, these variables are also stored at nodes J=(JR+1),…,JDRY in the wet and dry zone. 

If IWTRAN=1 and the computation reaches the standing water in a bay or lagoon, these 

variables are stored at nodes J=(JR+1), …, JMAX. 

 

The file OPARAM (unit =23) stores XB(J) with nodes J=1,2,…,JR and the following 

parameters: 

WT(J) = intrinsic wave period 2 /T π ω= (s) where the angular frequency ω  is computed using 

Eq. (2). 

QBREAK(J) = fraction Q  of breaking waves computed using Eq. (38). 

SIGSTA(J) = ratio * / hησ σ=  in Eq. (31) whose upper limit is unity in the wet zone. 

 

The file OXMOME (unit=24) stores XB(J) with J=1,2,…JR and the following terms in the x-

momentum equation (22): 

SXXSTA(J) = ( ) ( )2/ /xx xS g Q ghρ +
 

(m
2
) where 

xx
S  and 

x
Q  are given in Eqs. (24) and (19), 

respectively. 
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TBXSTA(J) = ( )/bx gτ ρ (m) where 
bx

τ  is given in Eq. (33). 

 

If  IANGLE=1 (obliquely incident waves), the file OYMOME (unit=25) stores XB(J) with 

J=1,2,…,JR and the following terms in the y-momentum equation (23): 

SXYSTA(J)  = ( ) ( )/ /xy x yS g Q Q ghρ +
 

(m
2
) where 

xy
S , 

x
Q  and 

y
Q  are defined in Eqs. (24), 

(19) and (20). 

TBYSTA(J)  = ( )/by gτ ρ (m) where 
by

τ  is given in Eq. (33). 

 

The file OENERG (unit=26) stores XB(J) with J=1,2,…,JR and the following terms in the wave 

action equation (36) or (63) with ω  being replaced by 1T − : 

EFSTA(J)/WT(J) = ( ) ( )E cos / /g xC Q h gθ ρ +
 

(m
3
/s) where E and 

g
C  are given in Eqs. (25) 

and (3). 

DBSTA(J) = ( )/BD gρ (m
2
/s) where 

B
D  is given by Eq. (38). 

DFSTA(J) = ( )/fD gρ (m
2
/s) where 

f
D  is given by Eq. (40). 

 

The file OXVELO (unit=27) stores XB(J) with J=1, 2, …, JR and the following cross-shore 

velocity statistics: 
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UMEAN(J) = mean velocity U  (m/s) of the depth-averaged cross-shore velocity U . 

USTD(J) = standard deviation 
U

σ  (m/s) of U . 

UPMEAN(J) = mean discharge velocity pU (m/s) in the permeable layer computed using Eqs. 

(70) and (118) if IPERM=1. 

If IOVER=1, these variables are also stored at nodes J = (JR+1), …, JDRY in the wet and dry 

zone.  If IWTRAN=1 and the computation reaches the standing water in a bay or lagoon, these 

variables are stored at nodes J=(JR+1), …, JMAX. 

 

If IANGLE=1, the file OYVELO (unit=28) stores XB(J) with J=1, 2, …, JR and the following 

longshore velocity statistics: 

STHETA(J) = sinθ  with θ  = wave angle as defined in Fig. 1 where sinθ  is computed using 

Eq. (21). 

VMEAN(J) = mean velocity V  (m/s) of the depth-averaged longshore velocity V . 

VSTD(J) = standard deviation 
V

σ  of V . 

It is noted that the present wet and dry model is limited to normally incident waves 

(IANGLE=0). 
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If IROLL=1, the file OROLLE (unit=29) stores XB(J) with J=1, 2, …, JR and 

RQ(J) = roller volume flux 
r

q  (m
2
/s) computed using Eq. (41). 

If IROLL=0, 0
r

q =  and 
r B

D D=  in Eq. (41). 

 

If IPROFL=1, the file OBSUSL (unit=30) stores XB(J) with J=1,2, …, JR and the following 

variables related to sediment transport: 

PB(J) = probability 
b

P  of sediment movement. 

PS(J) = probability 
s

P  of sediment suspension. 

VS(J) = suspended sediment volume 
s

V  (m) per unit horizontal bottom area. 

If IOVER=1, these variables are also stored at nodes J = (JR+1), …, JDRY in the wet and dry 

zone.  If IWTRAN=1 and the computation reaches the standing water in a bay or lagoon, these 

variables are stored at nodes J=(JR+1), …, JMAX. 

 

If IPERM=1,the file OPORUS (unit=31) stores XB(J) with J=1, 2, …, JR and the following 

variables related to the permeable layers in the wet zone: 

UPSTD(J) = standard velocity 
p

σ  (m/s) of the discharge velocity computed using Eq. (72). 
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DPSTA(J) = ( )/pD gρ  (m
2
/s) where the energy dissipation rate 

p
D  due to flow resistance in the 

permeable layer is computed using Eq. (68). 

 

If IPROFL=1, the file OCROSS (unit=32) stores XB(J) with J=1, 2, …, JMAX and the 

following cross-shore sediment transport rates: 

QBX(J) = cross-shore bedload transport rate 
bx

q  (m
2
/s). 

QSX(J) = cross-shore suspended sediment transport rate 
sx

q  (m
2
/s). 

(QBX(J) + QSX(J)) = cross-shore total sediment transport rate 
x

q  (m
2
/s). 

It is noted that the transport rates are stored at all the nodes but the rates are zero in the 

completely dry zone. 

 

If IPROFL=1 and IANGLE=1, the file OLONGS (unit=33) stores XB(J) with J=1,2, … JMAX 

and the following longshore sediment transport rates: 

QBY(J) = longshore bedload transport rate 
by

q  (m
2
/s). 

QSY(J) = longshore suspended sediment transport rate 
sy

q  (m
2
/s). 

(QBY(J) + QSY(J)) = longshore total sediment transport rate 
y

q  (m
2
/s). 
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If IOVER=1, the file OSWASH (unit=34) stores XB(J) with J= 1,2, …, JDRY or JMAX and the 

following quantities related to the wet and dry zone: 

PWET(J) = wet probability 
w

P  at node J corresponding to the ratio between the wet duration and 

the total duration at this node. 

QP(J) = water flux inside the permeable layer in Eqs. (62) and (121) if IPERM=1. 

 

If IOVER=1, the file OSWASE (unit=35) stores XB(J) with J = JWD, …, JDRY and the 

following quantities in Eqs. (141) and (142): 

HEWD(J) = water depth 
e

h  (m) corresponding to the exceedance probability e  = EWD.  

UEWD(J) = cross-shore velocity 
e

U  (m/s) corresponding to the exceedance probability e 

QEWD(J) = cross-shore volume flux 
e

q  (m
2
/s) corresponding to the exceedance probability e. 

 

If IPROFL=1 and IOVER=1, the file OTIMSE (unit = 36) stores the following time series in 

Main Program: 

TSTOUT = time t (s) starting from 0t =  for the storage of time series. 

TSQO(I) = wave overtopping rate oq  (m
2
/s). 
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TSQBX(I) = cross-shore bedload transport rate bxq  (m
2
/s) at the landward end of the 

computation domain. 

TSQSX(I) = cross-shore suspended sediment transport rates sxq  (m
2
/s) at the landward end of the 

computation domain. 

 

The file OMESSG (unit=40) stores warning and error messages generated during the 

computation.  This file has been used to find input errors and improve the numerical iteration 

methods adopted in CSHORE. 

A user of CSHORE may not be interested in the computed results in all the output files but 

should examine all the appropriate output files and ensure that the computed results are realistic 

physically.  This is especially true if CSHORE is applied to new problems where the previous 

applications of CSHORE have been summarized in Section 2. 

 

 11.  CONCLUSIONS 

    

The horizontally two-dimensional model C2SHORE and the cross-shore model CSHORE are 

presented.  The numerical model C2SHORE is based on the spectral wave model STWAVE 

(Smith et al. 2001) for the prediction of the directional wave transformation, radiation stresses, 

and wave-induced volume fluxes and the circulation model, which is a simplified version of 

SHORECIRC (Svendsen et al. 2002) for irregular waves, for the prediction of the wave setup 

and depth-averaged current velocities.  The combined wave current model CSHORE based on 
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the time-averaged continuity, cross-shore momentum, longshore momentum, wave action and 

roller energy equations predicts the cross-shore variations of the mean and standard deviation of 

the free surface elevation and depth-averaged cross-shore and longshore velocities under 

normally or obliquely incident irregular breaking waves.  Both models use the same sediment 

transport formulas for the cross-shore and longshore transport rates of suspended sediment and 

bedload on sand beaches.  These formulas are relatively simple and require the hydrodynamic 

input variables which can be predicted efficiently and fairly accurately using existing wave and 

current models.   The numerical model C2SHORE has been compared only with one set of field 

data partly because of its complexity and partly because of lack of bench mark data.  The much 

simpler model CSHORE has been compared with a number of small-scale and large-scale 

laboratory data and field data.  CSHORE has been extended to the intermittently wet and dry 

zone for the prediction of wave overwash of a dune and deformation of a low-crested stone 

structure. 

 

The computer program CSHORE has been developed with collaboration of a number of graduate 

students and visiting researchers for the last 10 years.  The essential parts of CSHORE and the 

details of the input and output are described in this report in order to facilitate the use of 

CSHORE by the broad coastal community.  CSHORE based on the time-averaged governing 

equations is much easier to apply than the corresponding time-dependent model developed by 

the author of this report (e.g., Kobayashi and Wurjanto 1990, 1992).  A user of CSHORE for a 

specific problem should read references in Section 2 that are related to the user’s specific 

problem because the user will need to interpret the computed results.  CSHORE provides various 

options but only certain combinations of the options have been examined in the previous 
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computations in Section 2.  Finally, CSHORE is being compared with a gravel beach experiment 

and a beach recovery experiment and will be extended to allow gradual alongshore variations. 
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