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Abstract

This report describes tsunami benchmark testing of the Boussinesq model FUNWAVE-
TVD, carried out in conjunction with the National Tsunami Hazard Mitigation Program, MMS
Tsunami Inundation Model Validation Workshop, March 28 - April 1, 2011. The results
presented here represent testing of Version 1.0 of the code, and will be updated online at
http://chinacat.coastal.udel.edu/k̃irby/progrsams/funwave/funwave.html with each version change
for the publicly distributed code.

This work was supported by the National Tsunami Hazard Mitigation Program.
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1 Introduction

This report describes the benchmark testing of the Boussinesq model FUNWAVE-TVD which has
been carried out as part of the Benchmark Workshop exercise for the National Tsunami Hazard
Mitigation Program. The benchmark tests described here are taken from Synolakis et al (2007).
The report is organized as follows. Section 2 provides a description of the model equations and
numerical scheme. Section 3 provides basic information on hydrodynamic considerations used to
judge basic model validity. Sections 4 and 5 describe benchmark tests for analytical and laboratory
cases, respectively.

Data for each benchmark are obtained from http://nctr.pmel.noaa.gov/benchmark/
FUNWAVE-TVD is distributed as open source code. General users may obtain the most recent

tested version from the web site

http://chinacat.coastal.udel.edu/k̃irby/programs/funwave/funwave.html

which provides this code along with other programs developed at the Center for Applied Coastal
Research. The code is provided along with a unix/linux makefile, a users manual (Shi et al, 2011b),
and input files for executing the tests described in the manual. The present report will also be
updated with each major change in program version. Input files and scripts for executing the
benchmark tests described here are provided at the website given above

Version control for FUNWAVE-TVD is done using Mercurial (O’Sullivan, 2009). Users who
would like to become part of the development team should contact Fengyan Shi (fyshi@udel.edu)
or Jim Kirby (kirby@udel.edu).

2 Model description

In this section, we describe the set of Boussinesq equations which are used as the basis for FUNWAVE-
TVD. FUNWAVE-TVD is formulated in both Cartesian coordinates and in spherical (lat-long)
coordinates for application to ocean basin scale problems. The benchmarks considered here are
all treated in Cartesian coordinates, and we therefore omit description of the spherical coordinate
model. This may be found in Shi et al (2011b). We retain dimensional forms below but will refer to
the apparent O(µ2) ordering of terms resulting from deviations from hydrostatic behavior in order
to identify these effects as needed. Here. µ is a parameter characterizing the ratio of water depth to
wave length, and is assumed to be small in classical Boussinesq theory. The model equations used
here follow from the work of Chen (2006). In this and earlier works starting with Nwogu (1993),
the horizontal velocity is written as

u = uα + u2(z) (1)

Here, uα denotes the velocity at a reference elevation z = zα, and

u2(z) = (zα − z)∇A+
1

2

(
z2α − z2

)
∇B (2)
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represents the depth-dependent correction at O(µ2), with A and B given by

A = ∇ · (huα)

B = ∇ · uα (3)

The derivation follows Chen (2006) except for the additional effect of letting the reference elevation
zα vary in time according to

zα = ζh+ βη (4)

where h is local still water depth, η is local surface displacement and ζ and β are constants, as in
Kennedy et al (2001). This addition does not alter the details of the derivation, which are omitted
below.

2.1 Governing equations

The equations of Chen (2006) extended to incorporate a possible moving reference elevation follow.
The depth-integrated volume conservation equation is given by

ηt +∇ ·M = 0 (5)

where
M = H {uα + u2} (6)

is the horizontal volume flux. H = h+η is the total local water depth and u2 is the depth averaged
O(µ2) contribution to the horizontal velocity field, given by

u2 =
1

H

η∫
−h

u2(z)dz =

(
z2α
2
− 1

6
(h2 − hη + η2)

)
∇B +

(
zα +

1

2
(h− η)

)
∇A (7)

The depth-averaged horizontal momentum equation can be written as

uα,t + (uα · ∇)uα + g∇η + V1 + V2 + V3 + R = 0 (8)

where g is the gravitational acceleration and R represents diffusive and dissipative terms includ-
ing bottom friction and subgrid lateral turbulent mixing. V1 and V2 are terms representing the
dispersive Boussinesq terms given by

V1 =

{
z2α
2
∇B + zα∇A

}
t

−∇
[
η2

2
Bt + ηAt

]
(9)

V2 = ∇
{

(zα − η)(uα · ∇)A+
1

2
(z2α − η2)(uα · ∇)B +

1

2
[A+ ηB]2

}
(10)

The form of (9) allows for the reference level zα to be treated as a time-varying elevation, as
suggested in Kennedy et al (2001). If this extension is neglected, the term reduces to the form
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given originally by Wei et al (1995). The expression (10) for V2 was also given by Wei et al
(1995), and is not altered by the choice of a fixed or moving reference elevation.

The term V3 in (8) represents the O(µ2) contribution to the expression for ω ×u = ωiz × u
(where ω is vorticity and with iz the unit vector in the z direction) and may be written as

V3 = ω0i
z × u2 + ω2i

z × uα (11)

where

ω0 = (∇× uα) · iz = vα,x − uα,y (12)

ω2 = (∇× u2) · iz = zα,x(Ay + zαBy)− zα,y(Ax + zαBx) (13)

Following Nwogu (1993), zα is usually chosen in order to optimize the apparent dispersion
relation of the linearized model relative to the full linear dispersion in some sense. In particular,
the choice α = (zα/h)2/2 + zα/h = −2/5 recovers a Padé approximant form of the dispersion
relation, while the choice α = −0.39, corresponding to the choice zα = −0.53h, minimizes
the maximum error in wave phase speed occurring over the range 0 ≤ kh ≤ π. Kennedy et al
(2001) showed that allowing zα to move up and down with the passage of the wave field allowed a
greater degree of flexibility in optimizing nonlinear behavior of the resulting model equations. In
the examples chosen here, where a great deal of our focus is on the behavior of the model from the
break point landward, we adopt Kennedy et al’s “datum invariant” form

zα = −h+ βH = (β − 1)h+ βη = ζh+ (1 + ζ)η (14)

with ζ = −0.53 as in Nwogu (1993) and β = 1 + ζ = 0.47. This corresponds in essence to a
σ coordinate approach which places the reference elevation at a fixed level 53% of the total local
depth below the local water surface. This also serves to keep the model reference elevation within
the actual water column over the entire wetted extent of the model domain.

2.2 Treatment of the surface gradient term

The hybrid numerical scheme requires a conservative form of continuity equation and momen-
tum equations, thus requiring a modification of the leading order pressure term in the momentum
equation. A numerical imbalance problem occurs when the surface gradient term is conventionally
split into an artificial flux gradient and a source term that includes the effect of the bed slope for a
non-uniform bed. To eliminate errors introduced by the traditional depth gradient method (DGM),
a so-called surface gradient method (SGM) proposed by Zhou et al. (2001) was adopted in the
TVD based-Boussinesq models in the recent literature. Zhou et al. discussed an example of SGM
in 1-D and verified that the slope-source term may be canceled out by part of the numerical flux
term associated with water depth, if the bottom elevation at the cell center is constructed using the
average of bottom elevations at two cell interfaces. Zhou et al. also showed a 2D application but
without explicitly describing 2D numerical schemes. Although this scheme can be extended into
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2D following the same procedure as in 1D, it was found that the 2D extension may not be trivial
in terms of the bottom construction for a 2D arbitrary bathymetry. Kim et al. (2008) pointed out
that the water depth in the slope-source term should be written in a discretized form rather than the
value obtained using the bottom construction, implying that their revised SGM is valid for general
2D applications.

For the higher-order schemes such as the fourth-order TVD-MUSCL scheme (Yamamoto and
Daiguji, 1993; Yamamoto et al., 1998) used in the recent Boussinesq applications, the original
SGM and the revised SGM may not be effective in removing the artificial source. This problem
was noticed by some recent authors such as Roeber et al. (2010) who kept a first-order scheme
(second-order for normal conditions) for the numerical flux term and the slope-source term in
order to ensure well-balanced solution without adding noise for a rapidly varying bathymetry.

In fact, the imbalance problem can be solved by a reformulation of this term in terms of devi-
ations away from an unforced but separately specified equilibrium state (see general derivations in
Rogers et al., 2003 and recent application in Liang and Marche, 2009). Using this technique, the
surface gradient term may be split into

gH∇η = ∇
[

1

2
g(η2 + 2hη)

]
− gη∇h (15)

which is well-balanced for any numerical order under an unforced stationary condition (still water
condition).

2.3 Conservative form of fully nonlinear Boussinesq equations

For Chen’s (2006) equations or the minor extension considered here, Huα can be used as a con-
served variable in the construction of a conservative form of Boussinesq equations, but resulting
in a source term in the mass conservation equation such as in Shiach and Mingham (2009) and
Roeber et al. (2010). An alternative approach is to use M as a conserved variable in terms of the
physical meaning of mass conservation. In this study, we used M, instead ofHuα, in the following
derivations of the conservative form of the fully nonlinear Boussinesq equations.

Using M from (6) together with the vector identity

∇ · (uv) = ∇u · v + (∇ · v)u (16)

allows (8) to be rearranged as

Mt +∇ ·
(
MM

H

)
+ gH∇η

= H
{
u2,t + uα · ∇u2 + u2 · ∇uα −V1 −V2 −V3 −R

}
(17)

Following Wei et al. (1995), we separate the time derivative dispersion terms in V1 according
to

V1 = V′1,t + V′′1 (18)
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where

V′1 =
z2α
2
∇B + zα∇A−∇

[
η2

2
B + ηA

]
(19)

and
V′′1 = ∇ [ηt(A+ ηB)] (20)

Using (15), (19) and (20), the momentum equation can be rewritten as

Mt +∇ ·
[
MM

H

]
+∇

[
1

2
g(η2 + 2hη)

]
= (21)

= H
{
u2,t + uα · ∇u2 + u2 · ∇uα −V′1,t −V′′1 −V2 −V3 −R

}
+ gη∇h

A difficulty usually arises in applying the adaptive time-stepping scheme to the time derivative
dispersive terms ū2,t and V′1,t which are usually calculated using values stored in several time
levels in the previous Boussinesq codes such as in Wei et al. (1995) and Shi et al. (2001). The
equation can be re-arranged by merging the time derivatives on the right hand side into the time
derivative term on the left hand side, giving

Vt +∇ ·
[
MM

H

]
+∇

[
1

2
g(η2 + 2hη)

]
= ηt(V

′
1 − u2) (22)

+H
(
uα · u2 + u2 · ∇uα −V′′1 −V2 −V3 −R

)
+ gη∇h

where
V = H(uα + V′1) (23)

In (23), ηt can be calculated explicitly using (5) as in Roeber et al. (2010). Equations (5) and (22)
are the governing equations solved in FUNWAVE-TVD. After V is obtained, the velocity uα can
be solved by a system of tridiagonal matrix equation formed by (23) in which all cross-derivatives
are moved to the right-hand side of the equation.

2.4 Numerical schemes

The governing equations in FUNWAVE-TVD are discretized on a regular grid using a hybrid finite-
volume / finite-difference approach. The numerical scheme is described in detail in Shi et al (2011a,
2011b) and is omitted here for conciseness. Examples described below are based on discretizations
on regular Cartesian grids with uniform grid spacings in x and y. Terms in conservative form in
equations (5) and (22) are written in finite volume form using a MUSCL-TVD scheme, while
additional terms are written in cell-centered finite differences. An adaptive third-order Strong
Stability Preserving (SSP) Runge-Kutta scheme is used for time stepping (Gottlieb et al, 2001).
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2.5 Wave breaking and wetting-drying schemes for shallow water

The wave breaking scheme follows the approach of Tonelli and Petti (2009) who successfully used
the ability of NSWE with a TVD scheme to model moving hydraulic jumps. The fully nonlinear
Boussinesq equations are switched to NSWE at cells where the Froude number exceeds an certain
threshold. The threshold value is set to be 0.8 as suggested by Tonelli and Petti.

The wetting-drying scheme for modeling of a moving boundary is straightforward. The normal
flux n ·M at the cell interface of a dry cell is set to zero. A mirror boundary condition is applied
to the MUSCL-TVD scheme and discretization of dispersive terms at dry cells.

2.6 Boundary conditions and wavemaker

We implemented various boundary conditions including wall boundary condition, absorbing bound-
ary condition following Kirby et al. (1998) and periodic boundary condition following Chen et al.
(2003).

Wavemakers implemented in the study include Wei et al’s (1999) internal wavemakers for regu-
lar waves and irregular waves. For the irregular wavemaker, an extension was made to incorporate
the alongshore periodicity into wave generation in order to eliminate a boundary effect on wave
simulation. The technique exactly follows the strategy in Chen et al. (2003) who adjusted the
distribution of wave directions in each frequency bin to obtain alongshore periodicity. This ap-
proach is effective in modeling of breaking wave-induced nearshore circulation such as alongshore
currents and rip currents.

2.7 Parallelization

In parallelizing the computational model, we use the domain decomposition technique to subdivide
the problem into multiple regions and assign each subdomain to a separate processor core. Each
subdomain region contains an overlapping area of ghost cells three rows deep, as dictated by the
MUSCL-TVD scheme. The Message Passing Interface (MPI) with non-blocking communication
is used to exchange the data in the overlapping region between neighboring processors. Velocity
components are obtained from Equation (23) by solving tridiagonal matrices using the parallel
pipelining tridiagonal solver described in Naik et al. (1993).

3 Basic hydrodynamic considerations

There are two basic states which are required in ensuring that any numerical model works for
predicting evolution and inundations. The first step is to ensuring that the model conserves mass;
the second basic step is checking convergence of this numerical code to a asymptotic limit.
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Maximum Runup
Grid Size H/d = 0.045 H/d = 0.091 H/d = 0.181

0.1 0.02302 0.04061 0.06311
0.05 0.02303 0.04063 0.06315
0.01 0.02303 0.04064 0.06316
0.005 0.02303 0.04064 0.06316

Table 1: Maximum runup for gauge 9 for different grid size.

3.1 Mass conservation

Conservation of mass can be checked by calculating water volume at the beginning and at the end of
the computation. This should be dine by integrating disturbed water depth η(x, y, t) over the entire
flow domain, i.e., if the flow domain extends from the maximum penetration during inundation
x = Xmax to the outer location of the source region XS , and y = Ymax to Ys, then the total
displaced volume V (t) is,

V (t) =

XS∫
Xmax

YS∫
Ymax

η(x, y, t)dxdy (24)

The integral of η(x, y, t) should be used instead of the integral of the entire flow depth h(x, y, t) =
η(x, y, t) + d(x, y, t) where d(x, y, t) is the undisturbed water depth, because the latter is likely to
conceal errors in the calculation. Typically,η << d at offshore integrating h will simply produce
the entire volume of the flow domain and will mask errors. Note that testing of the conservation
of mass as above involves placing a closed domain within reflective boundaries (Synolakis et al.,
2007).

Calculations of conservation of mass has been done for all of the benchmark problems reviewed
in this report such that the total initial displaced volume V (t = 0) was within less than 1% of the
total displaced volume at the end of the computation V (t = T ) where T represents the computation
end time. It is assumed that the end of the computation is when the initial wave is entirely reflected
and reached offshore. However, with few changes in ∆x and ∆y the conservation of mass can be
improved.

3.2 Convergence

Convergence is the another basic hydrodynamic consideration that is checked for all of the bench-
marks in this research. Actually this process is made by checking convergence of the numerical
code to a certain asymptotic limit, presumably the actual solution of the equations solved. The
grid steps ∆x and ∆y has been halved, and the time step ∆t automatically reduced appropriately
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to conform to the Courant-Friedrics-Levy (CFL) criterion. As recommended in literature, conver-
gence of the code has been checked through the extreme runup and rundown. Table 1 displays
convergence of the code tested during the conical island test problem which is discussed in Section
5.3 below.

4 Analytical benchmarks

In this section, using analytical description of shallow water-wave (SW) equations for evolution of
the water surface, numerical results for different test cases is compared analytical solution. Also,
in this section we present several analytic solutions to the 1+1 version of shallow water-wave (SW)
equations. Although 1+1 models are not completely reliable for estimation of tsunmi behaviour
such as inundation mapping, they are first step of testing and validating models (Synolakis et al.,
2007).

In this section following benchmark problems has been studied:

1. Solitary wave on a simple beach

2. N-wave on a simple beach

3. Solitary wave on a composite beach

4.1 Solitary wave on a simple beach

The canonical problem of the shallow water-wave equations is covered here which contains the
calculation of a long wave climbing up a sloping beach of angle β attached to a constant-depth
region (Figure 1). The origin of the coordinate system is at the initial position of the shoreline and
x increases seaward.

Figure 1: Definition sketch for simple beach bathymetry(from Synolakis et al (2007, Figure A1)).

It is possible to derive exact results for the evolution and runup of solitary waves based on linear
theory (Synolakis, 1986, 1987). Solitary waves have long been used as a model for the leading wave
of tsunamis. Russell (1845) defined solitary waves as the great waves of translation, and consists of
a single elevation wave. While capturing some of the basic physics of tsunamis, solitary waves do
not model the physical manifestation of tsunamis in nature, which are invariably N -wave like with
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R/d
d(m) ∆x(m) H/d Cot(β) Runup Law Numerical Calculations Error(%)
0.5 0.1 0.03 10.0 0.112 0.110 1.6
0.5 0.1 0.05 10.0 0.212 0.204 3.6
0.5 0.1 0.1 3.333 0.291 0.282 3.0
0.5 0.1 0.48 1.0 1.131 1.109 2.0
0.5 0.1 0.01 20.0 0.040 0.042 4.9
5.0 1.0 0.03 10.0 0.112 0.112 0.4
5.0 1.0 0.05 10.0 0.212 0.212 0.2
5.0 1.0 0.10 3.372 0.308 0.315 2.4
5.0 1.0 0.10 3.372 0.731 0.734 0.3
5.0 1.0 0.294 2.747 1.016 1.058 4.2
5.0 1.0 0.005 20.0 0.017 0.017 1.1
5.0 1.0 0.01 20.0 0.040 0.039 3.0
100 5.0 0.05 10.0 0.212 0.202 4.5
100 5.0 0.03 2.747 0.257 0.266 3.4
100 5.0 0.03 2.747 0.600 0.598 0.4
100 5.0 0.03 20.0 0.040 0.040 0.2

Table 2: Runup data from numerical calculations compared with runup law values.

a leading-depression wave followed by an elevation wave (Synolakis et al., 2007). The following
runup law for the maximum runup R is provided based on slope of the beach and wave height of
the solitary wave

R = 2.831
√

cotβH
5
4 (25)

Benchmark problems that are studied here have different depths from 50cm to 1000m. Also, for
each depth, different slopes and wave heights has been studied. Table 2 provides a list of selected
examples that has been modeled including their maximum runup and the grid size for each case.
Figure 2 defines a comparison between numerical simulation and runup law.

In addition, the analytical solution for different times is available for a specific case in which
H/d = 0.0019 and β = arccot(19.85). In order to have the same time with the data it was
recommended that L = arccosh(

√
20)/γ in which γ =

√
3H/4d; therefore, the distance of the

wave from initial shoreline(X1) can be written as X1 = X0 + L (with respect to Figure 1). Figure
3 demonstrates profiles and time series of the water in eight different times. Extreme positions of
the shoreline are shown in figure 3 (the maximum runup and rundown occur t ' 55(d/g)1/2 and
t ' 70(d/g)1/2). Figure 4 shows water level fluctuations at two gauge locations X/d = 0.25,
X/d = 9.95. As it is clear in the figure the point X/d = 0.25 which is closer to initial shoreline,
becomes temporarily dry during the process but the point X/d = 9.95 remains wet throughout the
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Figure 2: Numerical simulation data for maximum runup of nonbreaking waves climbing up dif-
ferent beach slopes. Solid line represents the runup law (25).

entire length of the numerical simulation.

4.2 N -wave runup on a simple beach

Most tsunami eyewitness accounts suggest that tsunamis are N -wave like, i.e., they are dipolar,
which means they appear as a combination of a depression and an elevation wave, and frequently
as a series of N -waves, sometimes known as double N -waves (Synolakis et al., 2007).

Tadepalli and Synolakis (1994) described an N -wave with leading-elevation and depression
waves of the same height and at a constant separation distance and refer to this wave as an isosceles
N -wave with a surface profile given by

η(x, 0) =
3
√

3H

2
sech2[γ(x−XN )] tanh[γ(x−XN )] (26)

where

γ =
3

2

√√
3

4
H (27)
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Figure 3: The water level profiles during runup of the non-breaking wave in the case of H/d =
0.019 on a 1:19.85 beach. Solid blue line represents the analytical solution in according to Syno-
lakis(1986), and dashed red lines represents the numerical simulation.
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R/d
d(m) γ ∆x(m) H/d cot(β) Runup Law Numerical Calculations Error (%)
0.5 0.22 0.1 0.05 3.333 0.167 0.165 1.0
0.5 0.44 0.1 0.2 1.0 0.516 0.505 2.2
5.0 0.54 1.0 0.03 10.0 0.152 0.157 3.0
5.0 0.70 1.0 0.05 10.0 0.289 0.286 0.9
5.0 0.99 1.0 0.1 3.732 0.419 0.433 3.3
5.0 1.69 1.0 0.294 2.747 1.385 1.388 0.2
5.0 0.22 1.0 0.005 20.0 0.023 0.023 0.2
5.0 0.31 1.0 0.01 20.0 0.055 0.056 2.6

100.0 3.12 5.0 0.05 10.0 0.289 0.277 4.0
100.0 6.13 5.0 0.193 2.747 0.818 0.826 0.9
100.0 1.40 5.0 0.01 20.0 0.055 0.056 2.6
1000.0 9.87 20.0 0.05 10.0 0.289 0.275 4.7
1000.0 9.87 20.0 0.05 3.333 0.167 0.173 3.8

Table 3: Runup data from numerical calculations compared with runup law for N -wave.

Similar to previous part, following expression for the maximum runup of N -waves has been pro-
vided based on slope of the beach and wave height of theN -wave similar to solitary wave problem:

R = 3.86
√

cotβH
5
4 (28)

Benchmark problems that are studied here have different depths from 50cm to 1000m. Also,
for each depth different slope and wave heights has been studied. Table 3 provides a list of selected
different cases that has been modeled including their maximum runup and the grid size for each
case. Figure 5 defines a comparison between numerical simulation and runup law for N -wave
problem.

4.3 Solitary wave on composite beach

In this benchmark problem a complex topography consisting of three segments and a vertical wall
is considered (Figure 6). The benchmark test is described in Appendix A, Section 2.2 of Syno-
lakis et al (2007). Runup of non-breaking solitary waves on the vertical wall is simulated in this
case. Results have been compared with the analytical solution. Laboratory data exist for this to-
pography from a U.S. Army Corps of Engineers, Coastal Engineering Research Center, Vicksburg,
Mississippi experiment of wave runup on a model of Revere Beach, Massachusetts. However, the
maximum runup for solitary waves propagating up Revere Beach (Composite Beach) is given by
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Figure 5: Numerical simulation data for maximum runup of N-waves climbing up different beach
slopes. Solid line represents the runup law (28).

the runup law

R = 2h
− 1

4
w H (29)

where hwis the initial depth at the right vertical wall and H is the solitary wave height.
Two initial depths have been studied here; d = 18.8 cm, and d = 21.8 cm. For all cases a

grid size of ∆x = 0.10m has been used. Table 4 demonstrates a comparison of runup law with the

d = 21.8 cm d = 18.8 cm
H(m) R(Runup Law) R(Numerical) Error (%) H(m) R(Runup Law) R(Numerical) Error (%)
0.005 0.0146 0.0141 3.7 0.005 0.0152 0.0148 2.5
0.01 0.0293 0.0288 1.6 0.01 0.0304 0.0310 2.1
0.03 0.0878 0.0850 3.2 0.03 0.0911 0.0871 4.4
0.05 0.1463 0.1390 5.0 0.05 0.1519 0.1440 5.2

Table 4: Maximum runup of solitary wave on composite beach compared to runup law (29).
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Figure 6: Definition sketch for Revere Beach (from Synolakis et al (2007, Figure A7)).

numerical data for both depths studied here.
In addition, for this benchmark problem three different waves have been modeled (H/d =

0.0378, 0.2578, 0.6404 for cases A, B and C). Recorded data is compared with the analytical data
for gauge 4 to gauge 10 and also on the wall in Figures 7 - 9 . Grid size for this case is ∆x = 0.010
m. It should be mentioned that for analytical results the model has been used in linear, non-
dispersive and no friction mode.

5 Laboratory benchmarks

In this section different laboratory benchmarks are studied and result of numerical calculations is
compared with the laboratory data. Following benchmark problems are studied in this section:

1. Solitary wave on a simple beach

2. Solitary wave on a composite beach

3. Solitary wave on a conical island

4. Tsunami runup onto a complex three-dimensional beach; Monai Valley

5.1 Solitary wave on a simple beach

In this laboratory test, the 31.73 m-long, 60.96 cm-deep and 39.97 cm wide California Institute of
Technology, Pasadena, California wave tank was used with water at varying depths. The tank is
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Figure 7: Time evolution of nonbreaking H/d = 0.0378 initial wave on composite beach. The red
line shows the numerical solution and blue line represents the analytic solution.
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Figure 8: Time evolution of breaking H/d = 0.2578 initial wave on composite beach. The red line
shows the numerical solution and blue line represents the analytic solution.
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Figure 9: Time evolution of breaking H/d = 0.6404 initial wave on composite beach. The red line
shows the numerical solution and blue line represents the analytic solution.
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Figure 10: Time evolution of nonbreaking H/d = 0.0185 initial wave. The solid line shows the
numerical solution and dots represent the laboratory data.

described by Synolakis (1986, 1987). The bottom of the tank consisted of painted stainless steel
plates. A ramp was installed at one end of the tank to model the bathymetry of the canonical
problem of a constant-depth region adjoining a sloping beach. The ramp had a slope of 1:19.85.
The ramp was sealed to the tank side walls. The toe of the ramp was distant 14.95 m from the rest
position of the piston generator used to generate waves.
This set of laboratory data has been vastly used for many code validations. In this modeling test,
the data sets for the H̃/d̃ = 0.0185 nonbreaking and H̃/d̃ = 0.30 breaking solitary waves which
are the most frequently used and most appropriate for code validation.

For these cases a grid size of ∆x = 0.10 m has been used. Figure 10 and Figure 11 displays
the accuracy of the model for both nonbreaking and breaking waves. The runup error for the
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Figure 11: Time evolution of breaking H/d = 0.3 initial wave. The solid line shows the numerical
solution and dots represent the laboratory data.

nonbreaking wave case was 3.3% and for the breaking wave was 5.8%.

5.2 Solitary wave on a composite beach

Revere Beach is located approximately 6 miles northeast of Boston in the City of Revere, Mas-
sachusetts. To address beach erosion and severe flooding problems, a physical model of the
beach was constructed at the Coastal Engineering Laboratory of the U.S. Army Corps of Engi-
neers, Vicksburg, Mississippi facility, earlier known as Coastal Engineering Research Center. This
benchmark is described in Section 3.2 of Appendix A of Synolakis et al (2007).

The beach characteristics are exactly the same as the composite beach described in section 4.3.
In this benchmark problem three different waves are modeled (H/d = 0.0378, 0.2578, 0.6404 for
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Figure 12: Time evolution of nonbreaking H/d = 0.0378 initial wave on composite beach. The
red line shows the numerical solution and blue line represents the laboratory data.

cases A, B and C) and the numerical data is compared with the laboratory data for gauges 4 to 10
in Figures 12 - 14). Grid size for this case is ∆x = 0.010 m.

5.3 Solitary wave on a conical island

Laboratory experiments on the interaction between solitary waves and a conical island were con-
ducted by Briggs et al (1995). The three cases from this test illustrate the important fact that runup
and inundation heights on the sheltered back sides of an island can exceed the incident wave height
on the exposed front side, due to trapping of wave fronts propagating around the island circum-
ference. These tests have been used in a number of validation studies for a variety of models,
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Figure 13: Time evolution of breaking H/d = 0.2578 initial wave on composite beach. The red
line shows the numerical solution and blue line represents the laboratory data.
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Figure 14: Time evolution of breaking H/d = 0.6404 initial wave on composite beach. The red
line shows the numerical solution and blue line represents the laboratory data.
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including nonlinear shallow water equations (Liu et al 1995) and Boussinesq equations (Chen et
al, 2000). The benchmark test is specified in Section 3.3 of Appendix A of Synolakis et al (2007).

Large-scale laboratory experiments were performed at Coastal Engineering Research Center,
Vicksburg, Mississippi, in a 30m-wide, 25m-long, and 60cm-deep wave basin (Figure 15). In the
physical model, a 62.5cm-high, 7.2m toe-diameter, and 2.2m crest-diameter circular island with
a 1:4 slope was located in the basin (Figure 16). Experiments were conducted at depth of 32cm,
with three different solitary waves (H/d=0.045, 0.091, 0.181). Water-surface time histories were
measured with 27 wave gages located around the perimeter of the island (Figure 17).

Figure 15: View of conical island(top) and basin(bottom)(from Synolakis et al (2007, Figure A16)).

For this benchmark test, time histories of the surface elevation around the circular island are
given at four locations, i.e., in the front of the island at the toe (Gauge 6) and gauges closest to the
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Figure 16: Definition sketch for conical island. All dimensions are in cm (from Synolakis et al
(2007, Figure A17)).

Figure 17: Schematic gauge locations around the conical island(from Synolakis et al (2007, Figure
A18)).
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Figure 18: Comparison of computed and measured time series of free surface for H/d =
0.045.Solid lines: measured, Dashed lines: Computed.

shoreline with the numbers 9, 16, and 22 located at the 0◦, 90◦, and 180◦ radial lines (Figure 17). A
grid size of ∆x = 0.10m is considered for proper numerical simulation of this benchmark. Figures
18-20 shows the comparison between the laboratory data with numerical calculations. Table 5
represents the error of the maximum runup for each gauge for different wave heights.
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Figure 19: Comparison of computed and measured time series of free surface for H/d =
0.091.Solid lines: measured, Dashed lines: Computed.
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Figure 20: Comparison of computed and measured time series of free surface for H/d =
0.181.Solid lines: measured, Dashed lines: Computed.
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Gauge Number
H/d 6 9 16 22
0.045 6.0 13.2 0.1 18.9
0.091 3.2 16.6 11.6 0.26
0.181 1.6 13.33 13.8 13.3

Table 5: Percent error of predicted maximum runup calculated for each gauge in conical island test.

5.4 Tsunami runup onto a complex three-dimensional beach; Monai Valley

The Hokkaido-Nansei-Oki tsunami of 1993 that struck Okushiri Island, Japan, provided high-
quality data for tsunami researchers. Since maximum tsunami runup mark was discovered at
the tip of a very narrow gulley within a small cove at Monai, a laboratory benchmark was de-
signed based on Monai valley bathymetry and tsunami wave which struck this area. Based on high
resolution seafloor bathymetry existed before the event a 1/400 laboratory model of Monai was
constructed in a 205m-long, 6m deep, and 3.5m-wide tank at Central Research Institute for Elec-
tric Power Industry (CRIEPI) in Abiko, Japan and partly shown in Figure 21. The incident wave
from offshore, at the water depth of d = 13.5 cm is known and it is shown in Figure 22. There are
reflective vertical sidewalls at y = 0 and 3.5 m (Figure ??). The entire computational area for the
laboratory test is 5.448m ×3.402m, and the grid sizesrecommended for numerical simulations are
∆x = ∆y = 1.4cm. However, due to numerical limitations, computational domain that is used in
numerical simulation is longer in order to generate waves without any reflection disturbance from
the back wall( 12.488m×3.402m)(Figure 24). The input wave is a LDN with a leading-depression
height of 2.5 mm with a crest of 1.6 cm behind it which is produced in the model using FFT analysis
and WK TIME SERIES wavemaker option(Figure 22). Data for water surface elevations during the
laboratory experiment is given and compared with numerical simulations at three locations (Gauge
5, 7 and 9), i.e., (x, y) = (4.521, 1.196), (4.521, 1.696), and (4.521, 2.196) in meters (Figure 25).
Figure 26 represents the comparison between extracted movie frames from the overhead movie of
the laboratory experiment and numerical simulation. Finally, maximum runup in the narrow galley
in the numerical solution was 7.43cm which is comparable with the laboratory data (maximum
runup of 7.5cm in the lab data or 30m in field tsunami data).
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Figure 21: Bathymetric profile for experimental setup for Monai Valley experiment(2007, Figure
A24)).

Figure 22: Initial wave profile for Monai Valley experiment (2007, Figure A25)).
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Figure 23: Computational area for Monai Valley experiment(2007, Figure A26)).
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Figure 24: Computational area for Monai Valley numerical simulation.

36



0 5 10 15 20 25
−2

0

2

4

Gauge 5

c
m

0 5 10 15 20 25
−2

0

2

4

Gauge 7

c
m

0 5 10 15 20 25
−2

0

2

4

Gauge 9

Time(sec)

c
m

Figure 25: Comparison of computed and measured time series of free surface. Dashed lines:
Computed, Solid lines: Measured.
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Figure 26: Comparison between extracted movie frames from the overhead movie of the labo-
ratory experiment (left) (from http://burn.giseis.alaska.edu/file doed/Dmitry/BM7 description.zip)
and numerical simulation (right).
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