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Abstract. A depth-integrated, mild-slope equation for dispersive linear wave motion in a domain
under the combined effects of depth variation and rotation is derived. The model reproduces the
usual finite-depth mild-slope equation in the absence of rotation and also reproduces the usual
long wave approximations when the ratio of wavelength to water depth is large, either with or
without the additional effect of rotation. The model could serve as the basis for numerical codes that
could compute motions ranging from wind wave refraction to tidal oscillations, without restructuring
the internal model coelficients. Refraction and parabolic refraction-diffraction approximations are
constructed, and a computational example for wave focusing by a shoal with the effect of rotation is
included.
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1. Introduction. The problem of describing short surface waves in a rotating
domain has drawn occasional attention in the literature. By short waves, we mean
waves that have significant vertical variations in the structure of the wave-induced
velocity and pressure fields. In this connection, Gill (1982, §8.2) mentions that, for
the case where the axis of rotation coincides with the vertical axis (in the direction
opposing gravity), the solution for a Poincaré wave may be simply extended and gives
a dispersion relation

(1) w? = gAtanh Ah,

where w is the angular frequency of the wave in rotating coordinates, h is the water
depth, and g is the gravitational acceleration. The number A is the inverse length
scale of the vertical variation of the pressure and horizontal velocity fields, which vary
like

cosh A(h + 2)
@ cosh Ah

Finally, A is related to the wavenumber k (= 27/L, where L is the wavelength)
according to

(3) k2 =A% (1-¢€%),
where
(4) €= 5
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The Coriolis parameter f is twice the angular velocity § of the rotating domain and
thus € is an inverse Rossby number characterizing the ratio of Coriolis forces to inertial
forces, with € — 0 representing the high-frequency (relative to rotation rate) limit. In
addition, we may define the Rossby radius of deformation as a = \/gh/f. Gill pro-
ceeds to question whether the formulation has any relevance to oceanic phenomena,
since the Rossby radius is so much larger than h that hydrostatic (long wave) approx-
imations are sufficiently accurate. Thus, domains where both short wave dispersion
and rotation effects are important do not seem to overlap for flows on the earth’s
surface. '

More recently, Tsay (1991) attempted to develop a model for linear waves, such
as short Poincaré waves, in domains having depth variations that are relatively slow
in comparison to the wavelength. The desire for such a model grows out of the
existence of the mild slope equation of Berkhoff (1972) and Smith and Sprinks (1975)
for the case of irrotational flow in a nonrotating domain, which proved to be a highly
valuable resource in the development of wave propagation models for intermediate
water depths. The existence of such a model would provide the basis for numerical
codes that could be applied both to short wave and long rotational wave problems
with no alteration of model parameters. However, it is also true that the mild-slope
equation should pass identically into the long wave equations in the low-frequency
limit. This condition is met in the irrotational case, but the rotational model of
Tsay does not pass correctly into the appropriate long wave limit (see Kirby (1992)).
Tsay’s model is also only appropriate for flows in the neighborhood of the earth’s
poles, owing to the structure of the fluid acceleration terms, which were incorrect for
domains where the vertical coordinate deviates from the axis of rotation.

Since the existence and behavior of short surface waves may still be of some
interest and importance in tanks that are rotating relatively rapidly, we correct the
deficiencies in Tsay’s original formulation in §2, where we arrive at a wave equation
as well as a reduced elliptic equation. These equations extend the mild-slope equation
to include rotational effects. The correspondence to previously developed models in
the long wave limit is also demonstrated. In §3 we consider an eikonal transport and
ray approximation for waves in a slowly varying domain and examine the refraction
of plane Poincaré waves over a planar topography. To study diffraction effects in the
neighborhood of caustics of the geometric optics formulation, we specify a lowest-order
parabolic approximation for the combined refraction-diffraction of forward scattered
waves in §4. We demonstrate that Kelvin waves may be exactly described by the
lowest-order parabolic approximation being used and study the scattering of plane
Poincaré waves by a circular shoal. Finally, we consider the scattering of a plane
Poincaré wave by an impermeable vertical boundary and compare parabolic model
computations to analytic results given by Chambers (1964).

2. Theoretical formulation. We consider the motion of an inviscid, incom-
pressible fluid with a free surface in a rotating domain. The axis of rotation z coincides
with the vertical axis pointing opposite to the direction of gravity. The horizontal co-
ordinates (x,y) lie in the plane of the free surface, as indicated in Fig. 1. We consider
centripetal effects to be small enough to neglect. We first develop particularly useful
forms of the governing equations and then use these forms to derive a depth-integrated
model equation.
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Fi1G. 1. Definition sketch.

2.1. Governing equations. The governing equations for the linearized pertur-
bations to the hydrostatic rest state are given by

1
(5) ug —fv+;pz =0,
; .
(6) Ut+fu+;py=0:
(7) wy + %pz =0, =h(z,y) <2 <0,

together with

Subscripts z,y, 2, and t denote partial derivatives. Taking the divergence of the
momentum equation gives

(9) V2p = Pf(vz = uy)n

where V2(-) = {(-)zz + (*)yy + ()2} is the Laplace oper;EB?.\DiHerentiating (9) twice
with respect to time and using (5)-(8) gives a governing equation \for p alone,

(10) Vipu+ f'pes =0,  —h(z,y) S2<0, .. o

which we adopt as the basic governing equation. Equation (10) gives Laplace’s equa-
tion for the pressure field in the absence of rotation.
The kinematic condition at the bottom boundary is given by

(11) w = —hzu — hyv, z = —h(z,y).

Again, by differentiating (11) three times with respect to time and using the momen-
tum equations, we obtain '

(12) (P + Vih - Vip)u + f2p; + fI(h,p)e =0, 2= —h(z,y),
where V), denotes a gradient in horizontal coordinates and where

(13) J(h,p) = h:l:py = hyp.'c = |th X Vhpl
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is the Jacobian of h and p. The linearized kinematic surface boundary condition is
(14) e =W, z=0.

where 7 is the local free surface displacement. The linearized dynamic condition
reduces to

(15) p=pgn, z=0.
Combining (14), (15), and (7) gives
(16) P+ gp: =0, ze=),

Equations (10), (12), and (16) provide the boundary value problem for the linearized
perturbation to the hydrostatic pressure distribution arising from small amplitude
surface wave motion.

2.2. The model equation. Following the work of Berkhoff (1972) and Smith
and Sprinks (1975), we now reduce the three-dimensional boundary value problem to
a model equation for waves of nearly constant frequency in the horizontal plane of
the surface. The procedure adopted by Smith and Sprinks consists of identifying the
constant-depth solution to (10), (12), and (16) as a local approximation to the variable
depth solution. We then multiply (10) by the vertical structure of p and integrate over
the depth to obtain a weighted residual approximation, leaving a governing differential
equation in (z,y,t). Following the discussion in §1, we take

(17) p(z,y, 2, t) = p(z,y,t)F(2),
where
_ cosh A(h + 2)

The parameter ) is related to the angular frequency w according to (1), above, while
) is related to the wavenumber k by (3). From (15), we obtain
(19) b= pgn-

Then, multiplying (10) by F(z), integrating over the depth and using the surface and
bottom boundary conditions gives

egw

20 — Vi (9F1Vane) + €w’ne + gF2 (1 — €)1 — J(hyn) =0,
(20) e h - (9F1VRne) e + g2 ( € )ﬂt coshZ \h (hym)
where terms that are second-order in bottom slope have been neglected, where
. tanh Ah 2\h
= 2 — —————
(21) F = ./—hF dz ) (1 + sinh2/\h) '
0 2
Atanh Ah 2\h w
y = 2 - — ) e ——mp— = — 2
(22) B = th(F;) i 2 ( sinh2Ah) g VEh

and where ¢ is defined in (4). Equation (20) is the final time-dependent form of the
model equation. The model may be reduced further to an elliptic form using the
substitution

—iwt

(23) 1?(9«": Y, t) = ﬁ(:c,y)e
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Substituting (23) into (20) gives

(24) Vn - (9F1 Vi) + gk* Fui) + i—25—J (h,) = 0,
cosh® Ah
where k is defined in (3).

We end this section by remarking that that motion described by the boundary
value problem (10), (12), (16), or by the model equation (20) is essentially vortical
for the case of a rotating domain (e # 0). For strictly periodic motions with angular
frequency w, the velocity components are given by

(25) = ﬁff—ze)z) (—ine +eny),
(26) v= ;t!{f__(ﬁ% (—iny — €ng),
(27) w= -—ig%@n.

The vorticity is given by

€g ) . )
w(l — €2) [F:(nz + ieny), Fz(ny — iene), -FVin).

The vorticity vanishes in the limit € — 0, recovering the irrotational mild-slope ap-
proximation.

(28) @@=V xn=

2.3. Comparison to previous results. The elliptic form of the model (24)
reduces to Berkhoff’s equation in the limit ¢ — 0, as expected. The model equation
derived by Tsay (1991) lacks the third term in (24), and so his model cannot be taken
to be an appropriate model for rotational waves unless depth is constant or the water
is effectively deep (Ah large).

It is also revealing to look at the various limits of the time-dependent equation
(20). In the long wave limit (Ah — 0), we have Fy — h and F; — 0. The appropriate
limiting form of the model is then

(29) (mt + 62@'271): - Vh - (ghVin)e — egwJ(h,n) =0,

which is the usual form for the linearized rotating shallow water wave equation (see
Pedlosky (1979, p. 69)). In the absence of rotation, (20) may be integrated once in
time to obtain the result

(30) e — Vi - (CCyVan) + (w? — k2CCy) n =0,

where C and C, are the phase and the group velocities for linearized irrotational
surface waves. This equation was given originally by Smith and Sprinks (1975).

3. Geometric optics approximations for shoaling and refracting waves.
For the case where variation in the wave train is very slow relative to variations in
the domain topography, the propagation of short surface waves is often treated from
the geometric optics point of view, which leads to the usual ray approximation.

The geometric optics approximation is constructed by substituting the ansatz

(31) i = a(z,y)eV =),
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where a is a real amplitude and 1 a real phase function, in (24). Separating the
real and imaginary part of the resulting equation leads to an eikonal equation for the
phase function

Vh - (F1Vxa)
32 Vph)? = k? = ——S s J(h, ) + LA
(32) (Vi) Fy cosh? \h (h,¥) Fia
and a transport equation for wave energy
33 Vn - (@FVAp) + —g—J(hya?) = 0.
(33) v (@R V) + g J(hya?)

For the case of irrotational short waves, it is usually assumed that, for bottom slopes
of small size, the last term in (32) is second order in the small parameter and thus
negligibly small (see Keller (1958)). Retention.of the term allows for the inclusion of
weak diffraction corrections in grid-based refraction schemes. In the present case, we
see that the inclusion of rotation leads to an additional term in (32), based on the
Jacobian, which remains at first order in the bottom slope and thus is more important
than the neglected diffraction effects. Neglecting terms that are second-order small
leads to the geometric optics approximation

€

s
(34) (Vay)* =k Ty coshZ A AhJ (h,9)
and
(35) Vh - (@®FVay) =0.

For straight and parallel bottom contours with z direction normal to the slope,
we study the spatial evolution of amplitude a(z). The phase function is given by

(36) Y(z,y) = ¥(z) +my,

where m is the longshore wavenumber and is constant. The geometric optics approx-
imation reduces to

eh.m
Fy cosh? Ah’

a _ Fln ‘Pro
(38) s \/ FU,

where the subscript 0 denotes a reference incident wave condition. For Poincaré waves,
F) can be rewritten as

(37) ¥2 =k —m? -

ce,

(39) F= (1-€?),

where C and C, are the local phase and group velocities. Equation (38) becomes

= [Cao [¥xo k _ g g

a
(40) ao C, V ko ¥
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Fi1G. 2. Shoaling coefficient for Poincaré waves over a slope.

where the first and the last terms in the right-hand side are shoaling and refraction
coefficients, respectively.

Figure 2 shows a plot of shoaling coefficient K, as a function of kh for several
different rotation rates. Rotation, which shortens the vertical profile of the wave-
induced velocity field, causes a shoreward shift of the shoaling curves which becomes
pronounced as € approaches unity. Otherwise, the form of the curve is unaltered from
the irrotational case.

Refraction coefficients with rotation effects are larger than with no rotation effects
in the whole range of kh, approaching unity at large values of kh. An inspection of
(37) and (40) shows that the refraction coefficient is dependent on angle of incidence
and beach slope as well as the rotation rate. Figures 3(a) and 3(b) show results for
K, and K K, for a case with a mild slope h; = 0.1, in which the importance of
the Jacobian term is minor. The refraction coefficient shows a strong dependence
on angle of incidence 6y and a weaker dependence on rotation rate (except at large
¢, where the effect is similar to the effect on the shoaling coefficient.) In contrast,
Figs. 4(a) and 4(b) show results for a much more severe slope, h, = 0.55. In this case,
refraction coefficients take on values larger than unity for a wide range of parameters.
A strong peak in the coefficient near kh = 1 is noted for € = 0.8. This peak occurs
because the value of ¥, becomes locally small. For more severe bottom slopes, the
value of ¥, can take on zero or imaginary values, indicating the formation of a pair of
turning points in the governing differential equation. These turning points correspond
to caustic lines parallel to the topography in the geometric optics approximation. For
these cases, waves incident from offshore would be reflected at the deeper caustic
location, while waves originating in shallower water could be totally reflected at the
shallower caustic location. This case differs from the case of total reflection of a wave
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propagating toward deep water, in that the reflection could occur at a small value
of kh in either the intermediate depth or long wave approximations. Figure 5 gives
a plot of values of (¥,/k)? for a range of parameters. The appearance of turning
* points, associated with zeros of the plotted curves, is apparent for the large bottom
slope cases. !

In reality, diffraction effects would become strong and would modify the wave
height predictions near the caustic positions. We do not consider this effect further
here, in favor of moving to the development of a parabolic approximation, which will
allow for the treatment of caustics over an arbitrary topography.

4. A parabolic approximation for forward-propagating waves. Wave prop-
agation in a domain with a predominant direction and little backscatter may be mod-
elled using a parabolic approximation of the elliptic boundary value problem (see
Radder (1979)). In this section, we establish the standard small-angle parabolic ap-
proximation for the elliptic model (24) and apply it to the study of wave focusing and
diffraction by a submerged bump. The effect of increasing rotation on the scattering
process is examined. We also extend a recent result of Dalrymple and Martin (1992) to
provide transmitting lateral boundary conditions for the computational domain. The
transmitting boundaries allow complete transmission of the scattered waves arising
inside the computational domain.

4.1. The parabolic equation. Considering the dominant direction of wave
propagation to be the x direction, let 7} be written as

(41) i(z,y) = Az, y)e*o?,

where ko is a constant reference wavenumber and A is a complex amplitude. Substi-
tuting (41) into (24) gives

(FiAz)z + (FiAy)y + {(k2 — K)Fy + —k":-ﬂh,,} A
(42) cosh” \h

€
+ i< koFizA+2 FA+——-—hA—hA}=0
{ko 1z koF1Az COShzz\h( zily v :1:)
To construct the parabolic approximation, we assume that the direction of travel
of all waves in the computational domain deviates only a small amount from the z
direction. Taking § < 1 to characterize the size of the angular deviation away from
the z direction, the scales of A, and A, are given by

A Ay

~ 2 _— ~
We assume that
IVah| _ <2

which restricts the depth variations to be slow relative to the surface wavelength.
Then, ignoring the terms smaller than O(6?) in (42) leads to

. 8 )
FiAyy + {Fly + tmhz} Ay + 2ikoF1 A,

(45) ko

+{ (K2 - K)F, + ——h, kF,,}A:O,
{( 0)F1 T + kol
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F1G. 3. Refraction coefficient and wave height change for waves refracting over a slope: hy =
0‘1, (ﬂ-) Kr, (b) K;Kr.
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F1G. 4. Refraction coefficient and wave height change for waves refracting over a slope: hy =
0.55, (a) Ky, (b) KsK;.
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FiG. 5. = component of wavenumber for refracting and shoaling waves with rotation effects.

which is the parabolic equation for A. A standard Crank-Nicolson finite difference
scheme is used to discretize (45).

4.2. Treatment of lateral boundaries. We use two boundary conditions along
the lateral boundaries. One is the closed boundary condition in which there is a perfect
reflection along the boundaries. For the case of propagation in a rotating domain with
boundaries oriented along the z direction, the lateral boundary condition on 7 may
be written as

(46) fiy — i€y = 0.

Substituting expression (41) for 9 and dropping the smallest term gives the model
boundary condition

(47) Ay + koeA = 0.

The other boundary condition studied here is the open, transmitting boundary con-
dition developed by Dalrymple and Martin (1992), who used this condition for the
simple parabolic equation

(48) Ay, + 2ikA, = 0.
The boundary condition may be written as

6/1(1?, yb) _ ajinc(xs yb)

Ay Ay
_ 3 ‘ 8/1(5'%) d§ _f A aA"inc(Esyb) d§
HiK./; ¢ v —§& %Kfo 0é vz =¢'

i By |

(49)
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where Aj,c is an incident wave amplitude, y; is the y-coordinate of the boundaries,
and K = \/2ik/n. The condition requires the evaluation of an integral along each
lateral boundary. For constant water depth along the boundaries, the present model

(45) reduces to the form

(50) Ayy +2ikoAr +aA =0
at the boundaries, where

(51) a=k?-kj

is a constant. The equation for A may be reduced to the simple parabolic equation
for A by the transformation

(52) A = Adioz/%o

Note that, if kg is defined to be the wavenumber for the constant depth region away
from the shoal, then « is identically zero, and no transformation is required.

4.3. Representation of Kelvin waves in the parabolic model. In a domain
with constant depth and closed lateral boundaries, the parabolic equation is, from

(45),

(53) 2ikoAz + Ayy + (k2 —k3)A =0
with the boundary condition (47). Let kg be given by
(54) ko = A
Substituting (54) into (53) and (47) gives

(55) A =ae M
and,
(56) ﬁ = aei)\:\:—-dy,

where a is an arbitrary real amplitude. Equation (56) is the exact solution for a
Kelvin wave, which also arises from the full elliptic equation. This result is of some
interest, since it represents a case where a parabolized wave equation reproduces an
exact solution, even though the wave being represented has transverse variations in
its properties. The success of the approximation here is likely due to the fact that the
motion associated with the Kelvin wave is purely unidimensional and is oriented in
the preferred z direction. The solution is also only correct if the choice (54) is made;
any other choice leads to errors in the wavelength and transverse decay rate.

4.4. Scattering of Poincaré wave by a circular shoal. As an example of
the numerical application of the parabolic equation to a wave scattering problem, the
propagation of an incident plane wave over a circular symmetrical shoal with parabolic
bottom slope is considered. The depths in the computational domain are described
by

72
ho + (ho — hm)—R—2 for r <R,
ho forr > R,

>
Il

(57)

12
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FiG. 6. Domain for parabolic model computations.

where
(58) 2= (z—2m)? + ¥ - ¥m)*,
(59) hm = %ho.

The geometry of the model domain is illustrated in Fig. 6. We assume that, when
there are no rotation effects,
Lg 1
— =1 koho = =,
R 1 07t0 2
where Lo is the initial wavelength, and vary the rotation effect e over the values € =
0, 0.4, 0.8. The reference value of \ for the incident wave is held fixed, so that ko
varies with rotation rate. This choice causes the depth of penetration of the wave to
remain constant as the rotation rate is varied. As a result, the incident wavelength
increases with increasing rotation.

The numerical grid spacing is given as

(60)

(61) Az = Ay, R =324z

An incident wave enters the domain in the positive x direction. When there is no
rotation effect, the initial relative water depth, koho = 0.5, means that the depth is
intermediate.

Figures 7(a)-(d) show several transects of waveheight normalized by incident
values along the indicated lines in Fig. 6. The lateral boundaries are taken to be
open in this case. The effect of rotation is to deflect the wave focal pattern to the
left of the direction of propagation, causing an increasingly asymmetric wave pattern
as rotation increases. The efficiency of the open lateral boundary condition (50) in
allowing the scattered waves to exit the computational domain is also apparent. A
plan view of the surface profile of the scattered wave field for € = 0.8 is shown in
Fig. 8. The asymmetry of the wave pattern is seen to develop strongly over the shoal

13
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Fic. 7. Normalized wave heights for waves over a circular shoal; open boundaries. (a) y/R =
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3.5. (b) z/R =3, (c) ¢/R=5, (d) z/R=T.

FI1G. 8. Surface elevation contours for wave scattered by a circular shoal; open boundaries, € = 0.8.
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(indicated by dashed contour lines) but regains a more z-directed orientation in the
flat region downwave of the shoal.

Figures 9(a)—(c) show three transects across the channel for the case where a
plane Poincaré wave propagates into a channel with rigid vertical boundaries. In this
case, there is initial diffraction of the wave field at the boundaries and the evolution
of a Kelvin wave pattern on the boundary to the right of the direction of propagation.
This effect is noticeable immediately in Fig. 9(a), where the transect is upwave of
the shoal. On the left boundary, a reduction of the wave height occurs, which would
also be consistent with the pattern of a Kelvin wave in the channel. These diffraction
patterns persist down the channel and eventually are superimposed on the scattered
wave field, which evolves due to interaction with the shoal. Figure 10 shows the
instantaneous surface contours for the present case. The development of the Kelvin
wave at the right boundary and its subsequent interaction with the scattered wave
field is evident. Since the value of kg is taken to be k on the boundary (rather than ),
the resulting Kelvin wavelength is not accurately predicted. There is also a certain
amount of high wavenumber noise superimposed on the wave field, which is apparent
in the figure. This noise develops due to the sharp changes in wave height that occur at
the initial interaction of the plane wave with the lateral boundaries. The propagation
of spurious high wavenumber components in two parabolic model schemes has been
discussed previously by Kirby (1986).

5. Scattering process near impermeable vertical boundaries. In the pre-
vious section, it was seen that Poincaré waves normally incident on a channel with
vertical side walls are scattered by the sidewalls. This effect arises because the orbital
motion in the horizontal plane associated with the Poincaré wave is interrupted by
the vertical barrier. In this section, we consider the computationally cleaner case of
wave diffraction by a semi-infinite barrier to clarify the nature of the results.

The problem of diffraction of a plane Poincaré wave by a semi-infinite vertical
barrier has been discussed by Chambers (1964); we follow his notation here. We
consider a bairier lying on the positive z axis and take the incident wave to be of the
form

(62) n1 = exp (ik(z cosa + ysina) + iwt) .

The case of incidence parallel to the breakwater corresponds to o = w. We define the
diffraction function as

1 m(r,0,4)
(63) D(r,0,¢) = ﬁexp (i6(r, 0, ¢)) [m exp (—iv?) dv,
where z = rcos#,y = rsiné, and where
(64) O(r,0, $) = krcos(0 + ¢) — %n
(65) m(r,0,¢) = V2kr cos 1(0 + ¢).
Using this notation, the solution for the total wave field may be written as
(66) n = D(r,0,—a) + kyD(r,0,a) + ko D(r, 0, —a"),

where a* is determined by

a* g LA M2 o' s+1\"?
7 2 (23) I et (25) ’
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Fic. 10. Surface elevation contours for wave scattered by a circular shoal; closed boundaries,
¢ =038.

where s = (1 — €2)1/2, The coefficients of the second and third terms are given by

in i

(68) ky = M‘
sina — 1€ cos &

Qﬁisin% (1 = 8)1;2

sin o — 1€ COs & 8

(69) ke =

The first two terms of (66) represent the two components of the Sommerfeld solution
that appear in the absence of rotation. The third component has been described
by Chambers, but there have not been any plots of the resulting solutions in the
literature (at least to these authors’ knowledge). The third term represents a motion
trapped close to the breakwater and traveling with the breakwater on its right in the
northern hemisphere. It thus has the characteristics of the Kelvin wave; in particular,
as distance into a shadow region increases, the third term approaches a constant
amplitude along the wall, while the first and second terms decay exponentially in
amplitude along the wall.

We include a plot of the exact solution for a region 0 < kz < 10w, —10w < ky <
107 and a = = in Fig. 11. Since most modern mathematics programs have the ability
to compute the error function erf(z) with 2 complex, we rewrite D in the form

(=2 11/2
(1) D08 = T exp (10(r,0,8)) (1 +erf[0)/*m(r, 0, )]
Results are computed and plotted using Mathematica. For contrast, the result of

the parabolic model computation for the region 0 < kx < 10, —107 < ky < 107 is
shown in Fig. 12. In the analytic solution, scattering occurs in all directions from the
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FIG. 11. Surface elevation contours for scattering by a semi-finite breakwater; € = 0.4. Ezact
solution.

breakwater tip; however, it is too weak to be of importance in the upwave direction.
The parabolic model is not capable of representing this part of the solution. A com-
parison of Figs. 11 and 12 shows that the diffraction fringes oscillate more rapidly in
the transverse direction in the parabolic model computation than in the full solution.
The wave form along the breakwater is well predicted by the parabolic model. A com-
parison of analytic and model wave heights along the breakwater (z > 0) is shown
in Fig. 13. It is seen that the parabolic model overestimates the height of the Kelvin
wave propagating along the upper side of the breakwater, as well as underpredicting
the reduced wave height on the lower side.

The more complex pattern of wave height and wave pattern along the y = 0
boundary in Fig. 10 occurs because of the interaction of the scattered waves generated
over the shoal with the Kelvin wave propagating along the wall. This pattern is highly
dependent on the placement of the shoal and the width of the channel relative to the
shoal geometry. The height of the shoal relative to the uniform depth region exterior
to the shoal also has a strong effect on the distance in x at which waves scattered by
the shoal arrive at the side boundaries. Since the number of factors affecting an actual
wave pattern along the sidewall is large, we do not pursue a more comprehensive study
of the resulting wave patterns here.

18



SHORT WAVES IN A ROTATING TANK

107 1110 ﬂ
Aol o)’
(
| ; 0 0 0 |
ky il 0 0 0
[ :) 0 Q @ \QJQ K
1 Q@Q\J
0
0 f o
ol
L
|
0
| 0 0
] 0 0
1|} ¢ ( (
Wil 0 (
—107w Ml 0
FIG. 12. Surface elevation contours for scattering by a semi-finite breakwater; € = 0.4.
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FiG. 13. No?mauzed wave heights along breakwater. Solid lines are analytic results, dashed
lines are parabolic model computations.
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6. Discussion. While the model developed here is somewhat artificial from an
oceanographic point of view, the technique used to derive the model equation from the
equation for the fluid pressure is likely to have further application, especially in the
area of waves on shear flows, where a velocity potential does not exist (except in special
cases) and the stream function representation is available only in two dimensions.
Furthermore, the model developed here allows for the development of numerical codes
that may be applied to a range of physical phenomena, from short wave refraction-
diffraction to tidal motions, with no adjustment of model coefficients required.

The failure of the low-order parabolic approximation to provide accurate pre-
diction of Kelvin and Poincaré modes in a simultaneous calculation indicates that
some effort toward obtaining higher-order approximations is warranted, both for the
present intermediate depth model and for the usual long wave approximation.

REFERENCES

(1] J. C. W. BERKHOFF (1972), Computation of combined refraction-diffraction, in Proc. 13th
Internat. Conf. Coastal Engrg., Vancouver, pp. 471-490.

[2] L. G. CHAMBERS (1964), Long waves on a rotating earth in the presence of a semi-infinite
barrier, Proc. Edinburgh Math. Soc., 14, pp. 25-31.

[3] R. A. DALRYMPLE AND P. A. MARTIN (1992), Perfect boundary conditions for parabolic water-
wave models, Proc. Roy. Soc. London Ser. A, 437, pp. 41-54,

[4] A. E. GiLL (1982), Atmosphere-Ocean Dynamics, Academic Press, New York.

[5] J. B. KELLER (1958), Surface waves on water of non-uniform depth, J. Fluid Mech., 4, pp. 607~
614.

[6] J. T. KirBy (1986), Higher-order approzimations in the parabolic equation method for water
waves, J. Geophys. Res., 91, pp. 933-952.

(7] (1992), Discussion of linear surface waves over rotating fluids by T.-K. Tsay, J. Waterway
Port Coastal and Ocean Engrg., 118, pp. 331-333.

(8] J. PEDLOSKY (1979), Geophysical Fluid Dynamics, Springer-Verlag, Berlin, New York.

[9] A. C. RADDER (1979), On the parabolic equation method for water-wave propagation, J. Fluid
Mech., 95, pp. 159-176.

[10] R. SmiTH AND T. SPRINKS (1975), Scattering of surface waves by a conical island, J. Fluid
Mech., 72, pp. 373-384.

[11] T.-K. TsAy (1991), Linear surface waves over rotating fluids, J. Waterway Port Coastal and
Ocean Engrg., 117, pp. 156-171.

20



