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Abstract

The combined thermal-mechanical processes are modelled to predict the cross-shore
beach profile evolution in the presence of frozen sediment in the arctic. As a first at-
tempt, a relatively simple model is developed to predict the temporal and cross-shore
variations of the melting surface elevation and the thickness of the unfrozen sediment
overlying the frozen sediment. Simple analytical solutions are obtained under the
assumption of cross-shore uniformity. The analytical solutions reveal two important
dimensionless parameters. One parameter represents the unfrozen sediment thick-
ness relative to its potential erosion depth during a storm, while the other parameter
expresses the melting rate of the exposed frozen sediment in comparison to the me-
chanical erosion rate by wave and current action. A numerical method is developed to
predict the beach profile evolution in the presence of the frozen sediment under more
realistic conditions. The accuracy of the numerical method is tested by comparing
the numerical and analytical solutions. In order to expand the utility of the devel-
oped beach evolution model, its landward boundary condition is modified to allow
the formation of a horizontal niche as well as the horizontal retreat of a frozen cliff.
These simple models for the horizontal niche depth and cliff retreat are shown to be in
qualitative agreement with available data. The temperature and salinity data of the
ambient seawater are crucial for the quantitative comparisons.
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1. Introduction

The increasing trend of atmospheric concentrations of carbon dioxide and other
gases may result in increase in the earth’s temperature and sea level (e.g., ASCE Task
Committee 1992). Along Arctic coasts including the Beaufort Sea coast, longer open
water seasons resulting from the earth’s temperature increase would increase the joint
probability of the occurrence of large fetches and severe storms that generate large
waves as well as high water levels (Solomon 1995). In addition, the increase of sea
water temperature would increase the thermal erosion of frozen sediments exposed to
wave and current action.

At present, the only available method of assessing future coastal erosion rates is
through the extrapolation of past erosion rates measured by many researchers (e.g.,
Reimnitz and Barnes 1987; Barnes and Rollyson 1991). However, this approach would
not be reliable if the global climate changes should occur. A physical model for Arctic
coastal processes is required to quantify the effects of future changes on the past erosion
rates.

A scoping study for the development of such a model was performed by Baird &
Associates (1994) under contract to the Geological Survey of Canada. The extensive
literature review and synthesis performed in the scoping study indicated the feasibility
of combining the existing mechanical erosion processes model COSMOS-2D (Nairn and
Southgate 1993; Southgate and Nairn 1993) with the previous modelling of thermal
processes by Kobayashi (1985) and Kobayashi and Aktan (1986). The extensive field
data for the Beaufort Sea coast acquired by the Geological Survey of Canada (e.g.,
Solomon 1994,1995) could be used to calibrate and validate the combined model. In
addition, the cold flume at the National Research Council Canada in Ottawa would
provide detailed data to test the combined model in a more quantitative manner.

In this report, a combined thermal-mechanical erosion processes model is formu-
lated under the assumption of alongshore uniformity. Analytical solutions for beach
erosion due to a storm are obtained under the idealized conditions of cross-shore uni-
formity to identify important dimensionless parameters. A numerical method is devel-
oped to predict the cross-shore beach profile evolution under more realistic conditions.
The numerical method is validated by comparing the numerical and analytical solu-
tions. The landward boundary conditions of the numerical model are then expanded
to predict the formation of a horizontal niche into a frozen cliff as well as the overall
horizontal retreat of a frozen cliff. The thermal processes described in this report are
incorporated into COSMOS-2D by Dr. Nairn, who also compares the thermal version
of COSMOS-2D with the September, 1993 storm data obtained by Solomon (1995).

Although only the thermal processes during and after a single storm are described in
this report, the developed numerical model should also be applicable to many storms.
Solomon et al. (1993) have found that while severe storm events are important, the



cumulative effects of smaller storms are also well-correlated with cliff retreat rates. No
or little recovery of eroded beaches between storms appears to occur in contrast to the
significant recovery of eroded beaches along temperate coasts and may partly explain
severe long-term erosion along the Beaufort Sea coast (Kobayashi and Reimnitz 1988).
The thermal-mechanical erosion caused by many storms may hence be assumed to be
the sum of the erosion caused by each storm as a first approximation. Consequently,
the quantitative understanding of the thermal-mechanical erosion processes during a
single storm is an important first step for predicting the long-term erosion along the
Beaufort Sea coast.

2. Thermal-Mechanical Model for Beach Erosion

The thermal and mechanical erosion processes and modelling have been reviewed
in the scoping study performed before this project (Baird & Associates 1994). The
mathematical model adopted in this project is described concisely in the following.

Fig. 1 depicts the variables and parameters involved in the beach profile evolution
model where z = cross-shore coordinate which is taken to be positive landward; z =
vertical coordinate which is taken to be positive upward with z = 0 at the still water
level (SWL); ¢t = time associated with the beach profile change; z(¢, z) = elevation of
the seabed varying with respect to ¢ and z; z(t, z) = elevation of the melting surface of
the frozen sediment whose temperature equals the melting temperature 7',,; and ¢(¢, z)
= net onshore transport rate of coarse sediment (sand and gravel). The mathematical
model attempts to predict z4(t,z), 2zi(¢,z) and ¢(¢,z) as a function of ¢ and z for
given characteristics of the seawater, unfrozen and frozen sediments as well as for the
mean water elevation, waves and currents computed by the existing numerical model

COSMOS-2D.

The seawater is characterized by T,, = ambient seawater temperature which is
greater than the melting temperature 7}, of the ice embedded in the frozen sediment;
Sw = ambient seawater salinity in parts per thousand (0/00); C,, = volumetric heat ca-
pacity of the seawater; K,, = thermal conductivity of the seawater; and v = kinematic
viscosity of the seawater. Considering the limited field data available on T,, and S,
the temperature and salinity of the seawater are assumed to be given in this simplified
model, although melting of less saline ice contained in the frozen sediment reduces the
seawater temperature and salinity somewhat (Kobayashi 1985). The melting temper-
ature T,,(°C) may be estimated as T,,, ~ —0.06S,, for S,, < 35 (0/00) as explained by
Kobayashi (1985). It is noted that the temperature and salinity of the seawater in the
Canadian Beaufort Sea are influenced by the freshwater discharge from the Mackenzie
River (Dyke 1991; Macdonald et al. 1995). The typical values of Cy,, K., and v for the
seawater at T, ~ 0°C may be taken as C,, ~ 4.2x10%J/(m?.°C), K,, ~ 0.56W/(m-°C)
and v ~ 1.8 x 10~%m?/s.
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The wave-current bottom boundary layer for the convective heat transfer from the
seawater to the melting surface of the frozen sediment is represented by U, = near-
bottom fluid velocity; f,, = wave-current bottom friction factor; and k, = equivalent
sand roughness of the melting surface. For lack of laboratory and field data on the
convective heat transfer in the wave-current bottom boundary layer, use may be made
of the formulas used for sediment transport in the bottom boundary layer. In this
case, Uy is normally taken as the peak wave orbital velocity immediately above the
bottom boundary layer. The friction factor f, may be estimated using the formula
proposed by Swart (1974) in which k, may be related to the diameter of the coarse
sediment (sand and gravel). These values of U, and f,, are computed in COSMOS-2D.

The unfrozen sediment is assumed to consist of coarse sediment only because the
fine sediment (clay and silt) contained in the frozen sediment is likely to be transported
offshore when the frozen sediment melts. The unfrozen sediment is characterized by
n = porosity which is the pore water volume per unit volume of the saturated un-
frozen sediment; K, = thermal conductivity of the saturated sediment; and C, =
volumetric heat capacity of the saturated sediment. The typical values of these pa-
rameters (Kobayashi and Aktan 1986) may be taken as n ~ 0.4 for sandy beaches,
K, ~ 1.9W/(m -° C') neglecting pore water and salt convection (Harrison and Os-
terkamp 1978), and C; ~ 2.8 x 10%J/(m?3.° C). The values of K, and C, are uncertain
but it will be shown later that the heat conduction in the unfrozen sediment is sec-
ondary during storms.

The characteristics of the frozen sediment are represented by I = volumetric latent
heat of fusion per unit volume of the frozen sediment and v, = coarse sediment volume
per unit volume of the frozen sediment where it is assumed that the fine sediment does
not remain on beaches. The parameter L can be expressed as L = n;p;L; where n;
= porosity of the frozen sediment which may be assumed to equal the ice volume
including excess ice per unit volume of the frozen sediment; p; = density of the ice and
L; = latent heat of fusion per unit ice mass. For bubble-free pure ice, p; ~ 920kg/m?>
and L; ~ 3.3 x 10°(J/kg) (Ashton 1986). The value of n; depends on the amount of
excess ice. The data of Sellman et al. (1975) indicated that the excess ice content
defined as the interstitial ice exceeding 37.5% of the frozen sediment volume peaked 1
m below the land surface with an average value of about 35% and dropped to 0% at 9
m depth. The typical value of L may be taken as L ~ 1.3 x 108(J/m?) corresponding
to n; ~ 0.43. As for the value of v., v, = (1 — n;) if no fine sediment is contained in
the frozen sediment and v, = 0 if no coarse sediment exists in the frozen sediment. It
is noted that the heat conduction into the frozen sediment and the specific heat of the
frozen sediment are neglected herein in comparison to the latent heat of fusion of the
frozen sediment on the basis of the analysis by Kobayashi and Aktan (1985) of the
heat conduction into the frozen sediment exposed to wave action.

The volume conservation of the unfrozen coarse sediment per unit horizontal area



may be expressed as

2l — ) (s~ 2] = —52 0,2 ()
where (1 —n)(z, — z;) is the unfrozen coarse sediment volume per unit horizontal area,
whereas ¢ is the volumetric onshore transport rate of coarse sediment (the sediment
volume only) per unit width. The second term on the right hand side of (1) expresses
the rate of the coarse sediment volume per unit horizontal area released by the melting
of the frozen sediment.

The heat balance per unit horizontal area at the melting surface of the frozen
sediment neglecting the heat conduction and the specific heat in the frozen sediment
may be expressed as

625
L = b {Tw— 1) | (2)
The right hand side of (2) expresses the rate of heat transfer from the seawater to
the melting surface where h = heat transfer coefficient. The resulting vertical melting
rate is equal to (—0z;/0t), which is positive for the melting case of T, > T,. In the
following, the heat transfer coefficient k is estimated for the case of z, > z; where the
melting surface located at z = z; is insulated by the unfrozen sediment as well as for

the case of z, = z; where the melting surface is exposed to wave and current action.

For the case of z, > z;, the heat transfer from the seawater to the melting surface
occurs through the unfrozen sediment whose thickness is (2, — z;). The actual heat
transfer processes are expected to be complex because of the water flow through the
porous media caused by wave action (Harrison et al. 1983) and density differences
due to the temperature and salinity variations (Osterkamp et al. 1989). In this
simplified model, the heat transfer processes are assumed to be represented by a heat
conduction equation with negligible specific heat of the unfrozen sediment. Under this
assumption, the temperature of the unfrozen sediment can be shown to vary linearly
from the melting temperature T}, at z = z; to the seawater temperature 7}, at z = z.
Moreover, the heat transfer coefficient h used in (2) is given by h = K, /(2 — 2;) where
the thermal conductivity K, accounts for the factors that are not analyzed explicitly.

For the case of 2z, = z;, h in (2) is the convective heat transfer coefficient h,,
for the thermal bottom boundary layer. Kobayashi and Aktan (1986) estimated h,,
tentatively using the results summarized by Schlichting (1968) for turbulent boundary
layers in unidirectional flow with the transfer of heat from a flat plate. The convective
heat transfer coefficient h,, for the wave-current bottom boundary layer may thus be
expressed as

T 0.5f,Cu U, 3)

Y 14 E\05f,
where f,, = bottom friction factor; U, = fluid velocity immediately outside the bound-
ary layer; and C,, = volumetric heat capacity of the seawater. The parameter E in
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(3) is given by

B = E3=5{P—1+£n[1+g(P—l)]} for R, <5 (4a)
E = 052P%RI% for R, > 70 (4b)
E = E,-(E,-352P%) % for 5 < R, < 70 (4¢)
with
P =2 (5)
R, = —k"/‘?m’ (6)

where P = Prandtl number; R, = Reynolds number based on the equivalent sand
roughness k, and the shear velocity, /0.5 f,,Us; v = kinematic viscosity of the seawater;
and K, = thermal conductivity of the seawater. For hydraulically smooth boundary
layer flow with R, < 5, F equals E, given by (4a) as a function of P only. For fully
rough boundary layer flow with R, > 70, E is expressed by (4b). For the transition
range 5 < R, < 70, E is assumed to be given by (4c) based on the interpolation
between E, at R, = 5 and E at R, = 70. It should be emphasized that no laboratory
and field data are available at present to verify (3) and (4).

Combining the cases of z, > z; and 2z, = z;, the heat transfer coefficient A in (2)
may be expressed as

h = Ks/(z— 2) for (zp — z)) > Ky /hyw (Ta)
h = hy for (z, — z;) < K,/ hy (7b)

where the lower limit of (z, — 2;) is imposed in (7a) so that h, becomes the upper
limit of A.

For the case of z, > z;, (1) and (2) with (7) may be solved to obtain z, and z;
where the net sediment transport rate ¢ in (1) may be assumed to be the same as
that in the absence of the frozen sediment and may be estimated using the existing
numerical model COSMOS-2D. For the case of z, = z;, (1) and (2) with (7b) may
be solved to obtain z; and ¢ where ¢ in this case is limited by the rate of the coarse
sediment released by the melting of the frozen sediment. Since z;, 2; and ¢ vary with
respect to t and z, the regions of z, > 2; and 2z, = z; in the domain of interest are
likely to occur simultaneously and shift with time. Consequently, (1) and (2) with (7)
may appear to be relatively simple but are not easy to solve numerically.

To facilitate the subsequent analytical and numerical analyses, the following vari-
ables are introduced:

B(t,z) = =zt z)— z(t, ) (8)
D(t,z) = =z(t=0,z)— z(t,z) (9)

6



where B = thickness of the unfrozen sediment; and D = melting depth of the frozen
sediment starting from the initial time ¢ = 0. The volume conservation equation (1)
by use of (2) can be rewritten as

0B 1 0q
- = ot Cgh for B>0 (10a)
dq
5 C, or B=10 (10b)
with T _T T —T
Ve Lw—4m | PR ..
p=l—-n ; CB=§ i ’ CQ‘—vC I (11)

where p is assumed to be constant and A = h,, when B = 0. The cases of B > 0 and
B = 0 are separated in (10a) and (10b) to show clearly that ¢ is unknown for the case
of B = 0. The heat balance equation (2) can be rewritten as

oD
i Cph (12)
with 7o
Cp= 1 (13)

The heat transfer coefficient h given by (7) is expressed as a function of B

h = K,/ B for B > K, /hy (14a)
h = ke for B < K,/hy (14Db)

The initial conditions for B and D are B = B, and D = 0 at t = 0 where B, =
thickness of the unfrozen sediment at ¢ = 0.

3. Analytical Solutions

Analytical solutions are obtained to gain a physical insight into the problem and
identify important dimensionless parameters involved in the problem. The net sedi-

ment transport rate ¢ in the absence of the frozen sediment is assumed to be given
by

= V(ie—#,) fr0st<T (15a)
= 0 fort >T (15b)
where V = positive parameter associated with the mechanical erosion rate; z, =

landward limit of wave runup where ¢ = 0; and 7' = storm duration. The seaward
boundary of the following analysis is located at z = 0. For 0 < z < z,, ¢ < 0 and the



net sediment transport is in the offshore direction. The assumed linear variation of ¢
with respect to @ in (15a) yields d¢/0z = V, which is assumed constant.

The following dimensionless variables denoted by the superscript asterisk are in-

troduced
. pB . vc-D .k 1 Bq i

B=yr5 i V=37 ©«=yg i V=7 (16)
Substitution of (16) into (10) with A being given by (14) yields
oB* Ch
B = —q; + B for B* > B; (17a)
oB*
rells —q;+Cy for0< B*< By (17b)
g = O for B* =0 (17¢c)
L K,vo(Ty — To) hote(To — Ton) c
_P sUcldy — 4 . _ wVeldw — 4m . o, A
Cu = TLV? H Cf - LV ’ Bh - Cf (]‘8)
Eq. (12) can be rewritten as
oD* Ci . »
= = for B* > B; (19a)
%?* = G for 0 < B* < B;, (19b)

For ¢ given by (15), ¢X = 1 for 0 < ¢* <1 and ¢} = 0 for t* > 1 in the absence of
the frozen sediment. When the frozen sediment is exposed to wave and current action,
B* = 0 and (17c) indicates ¢} = Cy where the dimensionless parameter C; expresses
the melting rate of the exposed frozen sediment relative to the mechanical erosion rate
by wave and current action. The assumption of C'y < 1 is made so that the presence of
the frozen sediment will reduce the degree of erosion. The dimensionless parameter C,,
expresses the melting rate of the frozen sediment due to the heat conduction through
the unfrozen sediment as compared to the mechanical erosion rate by wave and current
action. The initial conditions for B* and D* are

¥ . _PBs
B*= B* = .
[¢] VT 1

D=0 att'=0

where B} represents the initial thickness of the unfrozen sediment relative to the
potential erosion depth during the storm in the absence of the frozen sediment.

Eqgs. (17) and (19) are independent of the cross-shore coordinate and depend on
the three dimensionless parameters C,, Cy and B} only. As a result, B* and D* vary
with respect to ¢* only in the analysis domain explained in relation to (15). In the



following, analytical solutions are obtained for the cases of C, = 0 and C, > 0 where
Cy = 0 corresponds to no heat conduction in the unfrozen sediment.

For the case of C, = 0, B; = 0 and (17b) is not needed. For B > 1, ¢, B* and
D* can be shown to be given by

g = 1; B'=(EB =) ; D'=0 ford<i*<] (20a)
¢ = 0; B*=(B-1) ; D=0 foxrt*>1 (20Db)

For BY > 1, B* > 0 and the frozen sediment is not exposed to the wave and current
action during the storm and D* = 0 because of C, = 0, implying that the frozen
sediment insulated perfectly by the unfrozen sediment will not melt. For B} < 1,
¢;, B* and D* are expressed as

g = 1 g B=(8 =" ; Ii"=( for 0 <t* < B; (21a)
@ = Csy; B'=0; D"=Cy(t*"—B;) forB, <t*<1 (21b)
g = 0 ;3 B*=03; D*=041-B)) for t* > 1 (21c)

For B} < 1, the frozen sediment is exposed to the wave and current action for the
portion B < t* < 1 of the storm during which ¢} is limited by Cy < 1 and the
melting depth D* increases linearly with ¢*. For t* > 1 after the storm, B* = 0
in (21c) should be interpreted as an infinitesimal positive value so that the unfrozen
sediment of infinitesimal thickness will stop the melting of the frozen sediment for the
case of C, = 0. This solution indicates that the assumption of C, = 0 does not allow
the gradual melting of the frozen sediment due to the heat conduction through the
unfrozen sediment after the storm.

The solutions for the case of C,, > 0 are derived assuming that B} > Bj for which
(17a) and (19a) are applicable at t* = 0. The derived solutions for ¢, B* and D* are
summarized in the following.

The frozen sediment will be exposed to the wave and current action during the
storm lasting for 0 < #* < 1 if #7 < 1 where the expression of ¢} is presented later.
Combining the cases of ¢ > 1 and ¢} < 1, ¢} is given by

¢p = 1 for0<¢* <min(¢,1) (22a)
¢ = U5 forti <t*<1 (22b)
¢ = 0 fort*>1 (22¢)

where min indicates the smaller value of the two values in parentheses. Eq. (22b) is
applicable only if t¥ < 1. For ¢} < t* <1, B* =0 and ¢} = C; using (17c)

As for B*, the solution of (17a) with ¢ = 1 and B* = B} at t* = 0 can be expressed

B*-0C,
B —C,

as

B: — B* + Cutn ( ) = for 0 < #* < min(t3, 1) (23)

9



with

(24)

t} = B — B} + Ctn (B° — C‘*)

B —0.

where (23) is valid as long as B* > By and ¢} = 1. It is noted that ¢X > ¢} as will be
shown in the following. Eq. (23) is solved using a Newton-Raphson iteration method
to obtain B* as a function of t*. For ] < 1, B* = B}, at t* = ¢} during 0 < ¢* < 1 and
the solution of (17b) with ¢ = 1 can be written as

B* =B} —(1—-Cy)(t* —t7) for £ < t* < min(t*,1) (25)

which is valid as long as 0 < B* < By and ¢} = 1. For C; < 1, B* given by (25)
decreases with ¢* and B* becomes zero at t* = t*

t; =1+ Bi/(1-Cy) (26)

which shows that ¢} > t; for By > 0 and Cy < 1. If ¢ <1, B* = 0 before the storm
ends at t* =1
B* =10 foris <1< 1 (27)

The solutions given by (23), (25) and (27) are applicable for 0 < ¢ < 1 during the
storm.

For t* > 1 after the storm, ¢ = 0 as indicated in (22c). For ¢} > 1, B* = B} at
t* =1 in (23) where the value of B} can be found using a Newton-Raphson iteration
method. The solution of (17a) with ¢} = 0 and B* = By at t* = 1 can be expressed as

B = [(By)! +2C, (" = 1)) fort*>1and#]>1 (28)

For 17 <1 and ¢ > 1, (25) yields the value of B* at t* = 1 and the solution of (17b)
with ¢} = 0 can be written as

B =Ci(t*—1)+ B —(1-Cp(1—1#]) forl<t*<t] and ££>1 (29)

which is valid only for B* < B} and B* = By at t* = t}. For t} < 1 and ¢} < 1, (27)
yields B* = 0 at t* = 1 and the solution of (17b) with ¢* = 0 is

B*=Cy(t*—1) forl<t*<t; andt’ <1 (30)

The expression of ¢ corresponding to the time of B* = Bj in (29) and (30) is given
by

t3 = t14+(1—-13)/C; fort;>1landt; <1 (31a)
t; = 14+ B;/Cy fort;)<landt]<1 (31b)

10



Finally, the solution of (17a) with ¢} = 0 and B* = Bj at t* =t} is given by
* *\2 = x]1/2 * *
B = (B}’ +2C, (" —13)] " fort>1; and t; <1 (32)

The melting depth D* of the frozen sediment can be found by solving (19) for B*
obtained above. For the initial duration 0 < ¢* < min(¢],1), and B* > B} and the
solution of (19a) with D* = 0 at ¢* = 0 using (17a) with ¢% = 1 can be expressed as

D*=t*+B*— B} for0<t*<min(],1) (33)

where B* is given by (23). For tf > 1, B* = Bf > B} and D* = (1 + B} — B}) at
t* = 1. The solution of (19a) using (17a) with ¢} = 0 for ¢t* > 1 is given by

D*=B*—-B,;+1 for t*>1 and t] > 1 (34)

where B* is given by (28). For ¢} < 1, B* = By and D* = ({{ + B; — B?) at t* = .
Furthermore, B* < Bj for t] < t* < t3, where ¢} is given by (31), and the solution of
(19b) can be written as

D*=C;(t* =) +t:+ B — B for ! <t* <t} and 3 < 1 (35)

For t* > 13 > 1, B* > B} and the solution of (19a) using (17a) with ¢¢ = 0 and
B* = Bj at t* =t can be expressed as

D*=B*"+Cs(ty—t])+1] — B, fort* >1t; andt] <1 (36)

where B* is given by (32) and D* given by (35) and (36) is continuous at t* = ¢3.

A sensitivity analysis is performed using the analytical solutions for ¢X, B* and
D* as a function of t* > 0 for specified Cy, Cy and B where C, and C; are defined
in (18), while B} = pB,/(VT). To estimate the order of magnitude of C,, C; and
B}, use is made of V ~ 0.lm/hr, T ~ 12hr, n = (1 — p) ~ 0.4, v, ~ 0.4, (T, —
Tn) ~ 1°C, K, ~ 2W/[/(m - °C), L ~ 1.3 x 108(J/m?), h, =~ 5,800W/(m? - °C)
and B, ~ 1m. The estimated value of h,, using (3) corresponds to f,, ~ 0.02, U, ~
Im/s, Cy =~ 4.2 x 106J/(m?®- °C) and E ~ 62 estimated using (4)—(6). For the
seawater at T, ~ 0°C, K, ~ 0.56W/(m - °C) and v ~ 1.8 x 107%m?/s, so that
P ~ 13.5 and E, ~ 75. Assuming k, ~ 0.4mm, R, ~ 22 and (4c) yields F ~ 62,
which is similar to F; in spite of the uncertainty of k,. For the assumed constant values,
Cu > 0.0001, Cy ~ 0.6 and B} ~ 0.5. Considering the uncertainties of these estimated
values of C,, Cy and B}, use is made of C, = 0, 0.0001, 0.001 and 0.01, C; = 0.1, 0.5
and 0.9, and B} = 0.1, 0.6 and 1.1. The computed results are presented in Appendix
A where the computed results for C;, = 0 and 0.0001 turn out to be practically the
same and the results for C,, = 0.0001 are omitted.

11



The computed temporal variations of ¢}, B* and D* for 0 < t* < 2 presented in 27
figures in Appendix A show the importance of Cy and B} for the thermal-mechanical
erosion processes. The parameter Cy expresses the melting rate of the exposed frozen
sediment relative to the mechanical erosion rate by the wave and current action during
the storm. This conclusion is expected because the erosion rate is limited by the
melting rate once the frozen sediment is exposed to the wave and current action.

The parameter B} represents the unfrozen sediment thickness relative to the po-
tential erosion depth of the unfrozen sediment in the absence of the frozen sediment.
This parameter essentially determines whether the frozen sediment underneath the
unfrozen sediment will be exposed to the wave and current action during the storm.

On the other hand, the parameter C, represents the melting rate of the frozen
sediment due to the heat conduction through the unfrozen sediment relative to the
mechanical erosion rate by the wave and current action. This parameter is not im-
portant during the storm because the effect of the heat conduction is negligible in
comparison to the mechanical erosion rate and the melting rate of the frozen sediment
exposed directly to the wave and current action. This conclusion is consistent with
the findings of Kobayashi and Aktan (1986) who examined the insulation effect of
the unfrozen sediment. However, the parameter C, is important in determining the
gradual melting of the frozen sediment underneath the unfrozen sediment after the
storm.

4. Numerical Method

A finite difference method is developed to solve (10), (12) and (14) numerically.
The parameters p, Cp, C,, Cp and K, are assumed to be constant. In reality, the
temperature difference (T3, — T;,) may vary gradually during a storm and modify
Cp, C; and Cp but such laboratory and field data are not available at present. The
convective heat transfer coefficient k,, given by (3) depends on the near-bottom fluid
velocity U, and the bottom friction factor f, which vary during a storm but are
computed by COSMOS-2D. Consequently, h,, is regarded as a function of ¢ and =z.
The initial conditions of B = B, and D = 0 at ¢t = 0 are specified as input.

The nodes of the finite difference grid are located at ¢ = @; withz = 1,2, ..., [
in the computation domain 0 < z < z, where I = number of the spatial nodes; and
z, = landward limit of wave runup. Consequently, ; = 0 and z; = z,. The nodal
spacing Az; = (241 — ;) with ¢ = 1,2, ..., (I-1) is allowed to vary in the same way
as in COSMOS-2D. The values of B, ¢q, D, h and h,, at the node ¢ and at the present
time ¢ are denoted by B;, ¢;, D;, h; and (hy,);, respectively. The values of B and D
at the node 7 and at the next time level (¢ + At) with At = time step size are denoted
by B} and D} with the superscript asterisk. The value of At is allowed to vary in the
time marching computation in a manner similar to COSMOS-2D as will be explained
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later. The computational procedures are explained in the following.

First, for the known bottom profile, still water elevation and incident wave condi-
tions, COSMOS-2D is used to compute (Up); and (f): at the node 7, which are used
to calculate (h,); using (3)—(6), as well as the potential sediment transport rate g;
in the absence of the frozen sediment which is not limited by the melting rate of the
frozen sediment. Eq. (14) together with B; and (h,); is used to compute h;. The
values of B;, ¢;, D;, h; and (h,,); are hence known at the present time level.

Second, the temporal and spatial derivatives in (10a) are approximated by finite
differences of first-order accuracy. The values of B at the next time level are computed
as follows:

< At(gs — ¢ ,

B! = B - %l +CeAthy, (i=1) (37a)
* ) At(git1 — gi-1) (e

Bl = Bim o s+ Oplth (i=2,3,...,1-1) (37b)
* At(qf — QI-I) .

B = B; PATI + CgAth;y (§=1I) (37c)

Since the thickness B of the unfrozen sediment must be zero or positive, the values
of B} computed using (37) are adjusted such that B = 0 if the computed B < 0.
For the nodes with the adjusted B} = 0, the values of ¢; are adjusted in the next step
to account for the sediment supply limit associated with the melting of the exposed
frozen sediment.

Third, the spatial derivative in (10b) for B = 0 is approximated by a finite differ-
ence of first-order accuracy and the following approximate equations are obtained:

@ = qs—0.5Az,Chhy (E=1) (38a)
gi-05 = Qivos— 0.5(Az;y + Az;)Cohy  (:=2,3,...,1-1) (38b)
gr—os = 47— D.5A$1_1th1 (z e I) (38C)

where ¢;_o.5 is the value of ¢ at the middle of the nodes (2 — 1) and 7 at the present
time level. It is assumed that ¢; = 0 and no wave overwash is allowed at the landward
boundary of the computation domain. Starting from node I with ¢; = 0 and seaward
withi = (I—1), (I-2), ..., 2, the value of ¢;—o5 is computed using (38b) and (38c)
if the adjusted B = 0 and is set as ¢;—o.5 = 0.5(gi—1 + ¢:) if the computed B} > 0. For
the node i = 1, ¢; is computed using (38a) only if the adjusted B} = 0. The values of
g; withi = (I —1),(/ —2),...,2 adjusted for the sediment supply limit are computed
using the following equation:

¢ =2%05—tGinn (=1-1,1-2,...,2) (39)
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The accuracy of this numerical procedure developed in this project is validated by
substituting the adjusted values of ¢; into (37) and ensuring that the computed values
of B} are practically the same as the adjusted values of B} > 0.

Finally, the values of D} at the next time level are computed using (12). Since B’
is already computed, the following finite difference approximation of (12) is adopted

D! = D; + 0.5AtCp(k; +h;)  (i=1,2,...,1) (40)

where h} is computed using (14) with B} and (h,);. The beach profile at the next
time level can be computed using (8) and (9) for the computed D! and B} with
¢t =1,2,...,1. The numerical procedures described above are repeated to march the
computation forward in time.

The finite difference method adopted to solve (10a) is explicit and there is an upper
limit of the time step size At allowed for numerical stability. It appears to be extremely
difficult to determine this upper limit of At in a theoretically rigorous manner because
of the switch of the governing equation from (10a) for the unknown B > 0 to (10b) for
the known B = 0. A tentative procedure is proposed in the following for estimating
an approximate upper limit of At for numerically stable computation.

Eq. (10a) for B > 0 may be rewritten as

0B dB
with
L 5 (42)
c=—3F
P %

If Cg = 0 and c¢ is constant, (41) has a solution in the form of B(z — ct) which is an
wave of permanent form propagating with a phase velocity ¢. The Courant condition
for numerical stability (e.g., Anderson et al. 1984) generally requires that the wave
(bed form) does not move more than one grid spacing over one time step At. The
Courant condition for the finite difference grid adopted herein may be expressed as

At | ¢; |< min (Az;_;,Az;) for all nodes (43)

where ¢; is the value of the phase velocity ¢ defined by (42) at the node 7 and at the
present time level.

In order to determine an appropriate value of At between the present and next
time levels before computing B and D} using (37) and (40), the upper limit of (At);
at the node ¢ based on (43) with finite difference approximations of (42) is computed

|B; — B, |

At), = Azp
( )1 1 |q2 _ q1|

(i=1) (44a)



|Biy1 — Bi|

Al). = min [Da; g%
(A1), ( ' L |41 — Gi1]

(i=23,....,]—1) (44b)

(At), = Azpp (i=1) (44c)
The adopted value of At is the smallest values of (At); with 7 =1,2,...,1. The lower
limit of the denominators in (44) is imposed to avoid the division by zero in (44). This
lower limit does not change the smallest value At. The problem of this procedure
based on the wave equation (41) occurs when the numerators in (44) become zero or
very small, corresponding to 0B/dz ~ 0 in (42). It is tentatively decided to impose a
lower limit of At computed using (44) as explained below.

The accuracy of the numerical method is examined by comparing the numerical
solution based on (10), (12) and (14) with the analytical solution based on (17) and
(19) for the four cases of Cy = 0.1 and 0.9, B} = 0.1 and 0.6, and C, = 0.01. To
facilitate this comparison, use is made of p =1, v, =1, (T —-Tn) =1, L =
1, K, =C, hy=Csand B, = B as input to the numerical model so that the
numerical values of ¢, B, 0dq/0z and D should become identical to the analytical
values of t*, B*, ¢! and D* in (16). Since the analytical solution is obtained for
the case of ¢ = 1 for 0 < ¢* <1 and ¢; = 0 for t* > 1 in the absence of the frozen
sediment, the numerical solution is computed for the case of g = (z —1) for 0 <t <1
and ¢ = 0 for ¢ > 1 in the range 0 < z# < 1, corresponding to V =1 and z, = 1 in
(15).

The accuracy of the numerical solution depends on the time step At and the nodal
spacing Az used in the computation. The value of At~! equals the number of time
steps during the storm of unit duration, whereas the value of Az~ specifies the number
of nodal intervals in the computation domain of unit length. The analytical solution of
Section 3 corresponds to the case of cross-shore uniformity where B*, ¢* and D* are
independent of z. The computed cross-shore variations of B, d¢/dz and D are found
to satisfy this cross-shore uniformity. Since dB/0z = 0 for the numerical solution,
the time step At can not be calculated using (44). The time step At specified in the
following computation may hence be regarded as the lower limit of At imposed in
relation to (44).

The numerical solution would be identical to the analytical solution if B = B*,
dq/0z = ¢, and D = D* for t = t* > 0. The numerical and analytical solutions
for the four cases are compared for different values of At and Az in Appendix B.
These comparisons indicate that the values of At on the order of 0.01 yield sufficient
accuracy even though the analytical solutions include the sudden changes of ¢%. On
the other hand, the computed results are found to be insensitive to Az in the range
of Az = 0.01 — 0.1 for this case of cross-shore uniformity. In other words, the present
analytical solution is not suited for determining the acceptable lower limit of Az.

15



5. Niche Formation into Frozen ClLiff

The assumption of ¢ = 0 at z = z, has been made for the analytical solution in
Section 3 and the numerical method in Section 4. This assumption is appropriate
for the case where no sediment transport occurs landward of the wave runup tip on
a beach. The landward limit of wave runup relative to the still water shoreline is
normally estimated using an empirical formula as is the case with COSMOS-2D. This
landward boundary condition of ¢ = 0 at # = z, will need to be modified for the cases
of wave overwash (Kobayashi et al. 1995) and scarp avalanche (Nairn and Southgate
1993).

Cliffs are common along the Canadian Beaufort Sea coast (e.g., Solomon 1995). A
horizontal niche into a frozen cliff may form during a storm if the base of the cliff is
exposed to wave and current action (e.g., Kobayashi 1985). The numerical method
in Section 4 can be applied to the case of niche formation by adjusting its landward
boundary condition.

Fig. 2 depicts the additional symbols introduced to treat the niche formation at the
landward boundary of the numerical model in Section 4. The toe of the cliff is located
at ¢ = z, in Fig. 2. The domain of the numerical model for beach erosion in Section
4 is limited to the range 0 < z < .. The horizontal depth y of the niche is unknown
and increases with time ¢. The niche height H,, may be assumed to be the same as the
height of wave runup on the cliff above the toe of the cliff. The horizontal thickness
B, of the unfrozen cliff sediment, which is assumed cohesive, may be different from the
initial vertical thickness B, of the unfrozen beach sediment. The coarse sediment (sand
and gravel) volume p, per unit volume of the unfrozen cliff sediment is likely to be less
than the corresponding value of p = (1 — n) for the unfrozen beach sediment which
has been assumed to consist of coarse sediment only in Section 2. The coarse sediment
volume v, per unit volume of the frozen cliff sediment may be different from that of
the frozen beach sediment but the same notation is used for simplicity. The frozen
beach sediment will be unlikely to be exposed to wave and current action because of
the supply of coarse sediment resulting from the niche formation.

For the case of y < B, in Fig. 2, the frozen cliff sediment is not exposed to wave
and current action, and the rate of the coarse cliff sediment removed by the niche
formation may be assumed to be the same as the offshore coarse sediment transport
rate (—¢.) at the toe of the cliff located at z = =z,

d

= (peHoy) = —q(t) = —q (t, 0 = =) 48)
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Figure2 : Formation of horizontal niche into frozen cliff
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where the coarse sediment transport rate, ¢(¢,z), on the beach is taken to be positive

in the onshore direction as shown in Fig. 1. Assuming that p. and H, are constant,
(45) yields

]_ i
y(t) = fo (—q.) dt for t <1, (46)

where use is made of the initial condition, y = 0 at ¢ = 0. The time {. required to
expose the frozen cliff sediment can be found by setting y = B, at t = ¢, in (46). It is
noted that the heat conduction in the unfrozen cliff sediment is neglected in light of
the sensitivity analysis using the analytical solutions in Section 3 and Appendix A. Eq.
(46) implies that the offshore coarse sediment transport rate (—¢.) at = z, predicted
by COSMOS-2D determines the horizontal niche depth y for the case of y < B..

For the case of y > B, in Fig. 2, the frozen cliff sediment is exposed to wave and
current action. The heat balance per unit alongshore length on the melting surface of
the niche height H, may be expressed as

d
= (LcHypy) = Hohy (T, — Tin) (47)

where L. = volumetric latent heat of fusion per unit volume of the frozen cliff sediment;
h., = convective heat transfer coefficient which may be estimated using (3) with f,
and U, evaluated on the vertical melting surface; and T, = ambient water temperature
which is assumed to be greater than the melting temperature 7}, of the ice embedded
in the frozen cliff sediment. Integration of (47) with y = B, at t = ¢, yields

t

y(t) =B+ L' | hy(Tw—Ty)dt for t>t. (48)

te

where L, is assumed constant. Eq. (48) implies that the temporal increase of y is
determined by the convective heat transfer from the seawater to the melting surface
of the frozen cliff sediment.

For the case of y > B., the offshore coarse sediment transport rate (—g¢.) at z = z.
is limited by the melting rate of the frozen cliff sediment.

d .
=i E (UcHny) at ¢ = T, (49)

where v, = coarse sediment volume released by the melting of the unit volume of the

frozen cliff sediment. Assuming that v, is constant, substitution of (47) into (49) yields

v.H,
L.

— e = hw (Tw - Tm) at z=2, (50)

which is the landward boundary condition for ¢(¢,z) during ¢ > t. employed in the
numerical model for beach erosion in Section 4.
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The order of magnitude of the horizontal niche depth y based on (48) may be
estimated by
yo~ B+ L7 hy (T — T) T (51)

where the storm duration 7" is assumed to be much greater than ¢.. Assuming that
B, ~1m, L, ~1.3x10%(J/m?), hy, ~ 5,800 W/(m?-°C), and T =~ 12 hr, (51) yields
y = 2.9 —10.6 m for (T, — T,,)= 1-5 °C where the seawater temperature T, relative
to the melting temperature 7}, during a storm is uncertain for lack of field data. The
simple expression of (51) yields the same order of magnitude as the more complicated
analytical solution derived by Kobayashi (1985) which was shown to be in qualitative
agreement with the available field data.

6. Simplified CIliff Erosion Model

The niche formation into the frozen cliff described in Section 5 eventually leads to
the failure of the block above the niche. Considering the difficulty in modelling the
block failure and melting as well as other cliff erosion processes including retrogressive
thaw failures (e.g., Solomon 1995), a simple model is developed herein for predicting
the overall horizontal retreat of a frozen cliff as shown in Fig. 3. The cliff is assumed
to retreat horizontally on the average. In Fig. 3, y = horizontal cliff retreat; H, = cliff
height; 0, = angle of the seaward cliff slope; d. = water depth below the still water
level (SWL) at the toe of the cliff during a storm; and R = wave runup height above
SWL on the seaward cliff slope. The other symbols in Fig. 3 are the same as in Fig.
2. The vertical thickness B, of the unfrozen sediment beneath the top surface of the
cliff is simply assumed to be the same as its horizontal thickness on the seaward cliff
slope. In the following, the analysis in Section 5 is modified to predict the horizontal
cliff retreat y as a function of time .

For the case of y < B, in Fig. 3, the horizontal cliff retreat is assumed to be
determined by the offshore coarse sediment transport rate (—g¢.) at the toe of the cliff
located at z = =,

]_ t
> fn (—go) dt for t <1, (52)

where p, and H, are assumed constant and use is made of y = 0 at ¢t = 0. Eq. (52) is
applicable until y = B, at t = t..

y(t) =

For the case of y > B, in Fig. 3, the frozen cliff sediment is exposed to wave and
current action. The exposed length £, of the seaward cliff slope may be given by

l.=min[(R+d.), (H.— B.)]/siné, (53)
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frozen sediment v = (1-n i)

Figure 3: Simplified model for horizontal cliff retreat
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where min indicates the smaller value of the two values in square brackets. The heat
balance on the inclined melting surface may be expressed as

d
di

Integration of (54) with y = B, at { = {, yields

[Le (He — Be)y] = Lehy (T ;Tm) (54)

y(t) = B, + [L. (H, — B.)] /fh T,)dt  for t >1. (55)

The offshore coarse sediment transport rate (—¢.) at « = z. determined by the hori-
zontal cliff retreat may be expressed as

d
—gc = [Pch + v, (Hc oo Bc)] I? at z =1z, (56)

where p, B, is the unfrozen coarse sediment volume per unit horizontal area above the
frozen cliff sediment. Substitution of (54) into (56) yields

gc:hw (Tw il Tm)
Lc (Hc == Bc)

- QC = [Pch '+ Ve (Hc - Bc)] at z = T (57)

which is the landward boundary condition for ¢(¢,z) during ¢ > 1, for the numerical
beach erosion model in Section 4.

The order of magnitude of the cliff retreat y based on (55) may be estimated by

Lohy (T — T)) T
Lc (Hc — BC)

y~ B.+ (58)
where the storm duration T is assumed to be much greater than ¢.. Eq. (58) is com-
pared qualitatively with the cliff retreat data at North Head caused by the September,
1993 storm along the Canadian Beaufort Sea coast (Solomon 1995). For the typical
cliff at North Head, use may be made of H, ~ 15 m, B, ~ 1 m, sinf, ~ 1 and L, ~
1.3 x 10%(J/m3). For the September, 1993 storm, it may be assumed that d, ~ 2 m,
R~2m,T ~ 1 day and h,, ~ 5,800 W/(m?.°C). The range of (T, — T),) = 1-5°C is
considered for lack of the temperature data. Eq. (53) yields £, ~ 4 m. Eq. (58) yields
y = 2.1-6.5 m for (T, — T}n) = 1-5°C. This range of y appears to be qualitatively
consistent with the annual cliff top retreat during 1993-1994 reported by Solomon
(1995).
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7. Summary and Conclusions

A combined thermal-mechanical beach erosion model is developed under the as-
sumption of alongshore uniformity. The net cross-shore transport rate of unfrozen
coarse sediment (sand and gravel) is estimated using the existing mechanical erosion
processes model COSMOS-2D when the transport rate is not limited by the supply
rate of coarse sediment resulting from the melting of the frozen sediment. The con-
servation equations for the heat (thermal energy) and the unfrozen coarse sediment
are used to predict the temporal and cross-shore variations of the melting surface ele-
vation and the thickness of the unfrozen sediment overlying the frozen sediment. The
landward boundary of the beach erosion model is located at the landward limit of
wave runup where the sediment transport rate is zero.

Simple analytical solutions are obtained under the assumption of cross-shore uni-
formity to gain a physical insight into the role of the frozen sediment in reducing the
beach erosion. The analytical solutions involve three dimensionless parameters. The
first parameter representing the unfrozen sediment thickness relative to its potential
erosion depth during a storm determines whether the frozen sediment will become
exposed to the wave and current action during the storm. The second parameter ex-
pressing the melting rate of the exposed frozen sediment relative to the mechanical
erosion rate indicates the degree of erosion reduction provided by the frozen sediment.
The third parameter representing the melting rate of the frozen sediment due to the
heat conduction through the unfrozen sediment in comparison to the mechanical ero-
sion rate. This parameter turns out to be negligible because the melting due to the
heat conduction is small during the storm.

A numerical method is developed to solve the two conservation equations for the
heat and unfrozen coarse sediment. These equations are relatively simple but are
not easy to solve numerically because the thickness of the unfrozen sediment which is
initially unknown becomes zero once the frozen sediment is exposed to the wave and
current action. When the thickness becomes zero, the cross-shore gradient of the coarse
sediment transport rate becomes unknown and is determined by the melting rate of
the frozen sediment. The accuracy of the developed numerical method is examined by
comparing the numerical and analytical solutions. The number of time steps on the
order of 100 during a storm yields sufficient accuracy although the analytical solutions
include the sudden changes of the sediment transport rate.

In order to expand the utility of the developed beach erosion model, its landward
boundary condition is modified to allow the formation of a horizontal niche into a
frozen cliff. The temporal increase of the unknown horizontal niche depth during a
storm is assumed to be determined by the offshore coarse sediment transport on the
beach in front of the cliff until the frozen cliff sediment is exposed to the wave and
current action. After the exposure of the frozen cliff sediment, the increase of the
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horizontal niche depth is assumed to be determined by the convective heat transfer
from the seawater to the melting surface of the frozen cliff sediment, while the offshore
coarse sediment transport on the beach in front of the cliff is limited by the rate of
the coarse sediment released by the melting of the frozen cliff sediment. The order of
magnitude of the horizontal niche depth estimated by this simple model is shown to
be consistent with available data.

Considering the difficulty in modelling the sequence of the niche formation and
block failure, a simple cliff retreat model is proposed to predict the overall horizontal
retreat of a frozen cliff. The analysis of the horizontal niche formation is modified to
predict the horizontal retreat of a frozen cliff. The simple cliff retreat model is com-
pared qualitatively with the cliff retreat data at North Head caused by the September,
1993 storm along the Canadian Beaufort Sea coast (Solomon 1995). The qualitative
agreement between the measured and predicted cliff retreats indicates that more quan-
titative comparisons are warranted. The temperature and salinity data of the ambient
seawater during a storm are found to be crucial. The thermal version of COSMOS-
2D combined with this simple cliff retreat model will elucidate the degree of coupling
between the cliff retreat and the beach erosion in front of the cliff.
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Appendix A

Sensitivity Analysis Using Analytical Solutions

Figs. A-1 to A-9 show the normalized gradient of the sediment transport rate, ¢,
as a function of the normalized time t* for C,, = 0, 0.001 and 0.01 where C; is taken
as Cy = 0.1, 0.5 and 0.9, whereas B} = 0.1, 0.6 and 1.1. Figs. A-10 to A-18 show the
normalized thickness of the unfrozen sediment, B*, in the same way as ¢}. Figs. A-19
to A-27 show the normalized melting depth of the frozen sediment, D*, in the same
way as q.

These figures indicate that the simple analytical solution for C, = 0 given by
(20) and (21) is a good approximation for the solutions during the storm 0 < t* <1
in the range 0 < C, < 0.01 which is expected to be a realistic range for practical
applications. After the storm t* > 1, B* and D* increase with the increase of C,
because the increased heat conduction through the unfrozen sediment results in the
increased melting of the frozen sediment and the resulting increase of the unfrozen
sediment thickness.
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Figure A-1. ¢} as a function of t* for Cy = 0.1, B; = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-2. ¢} as a function of t* for Cy = 0.5, B} = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-3. ¢} as a function of ¢* for Cy = 0.9, B, = 0.1, and C)
= 0, 0.001 and 0.01.
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Figure A-4. g} as a function of t* for Cy = 0.1, B; = 0.6, and C,
= 0, 0.001 and 0.01.
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Figure A-5. ¢ as a function of ¢* for Cy = 0.5, B; = 0.6, and C,
= 0, 0.001 and 0.01.
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Figure A-6.

¢; as a function of ¢* for Cy = 0.9, B}
= 0, 0.001 and 0.01.
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Figure A-7. g} as a function of ¢* for Cy = 0.1, B; = 1.1, and C,
=0, 0.001 and 0.01.
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Figure A-8. ¢} as a function of t* for Cy = 0.5, B} = 1.1, and C,
= 0, 0.001 and 0.01.
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Figure A-9. ¢} as a function of ¢t* for Cf = 0.9, B; = 1.1, and C,
= 0, 0.001 and 0.01.
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Figure A-10. B* as a function of t* for Cy = 0.1, B; = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-11. B* as a function of t* for Cy = 0.5, B; = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-12. B* as a function of ¢* for Cy = 0.9, B} = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-13. B* as a function of t* for Cy = 0.1, B; = 0.6, and C,
= 0, 0.001 and 0.01.
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Figure A-14. B* as a function of t* for Cy = 0.5, B; = 0.6, and C,
= 0, 0.001 and 0.01.
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Figure A-15. B* as a function of t* for Cy = 0.9, B; = 0.6, and C,,
= 0, 0.001 and 0.01.
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Figure A-16. B* as a function of ¢* for Cy = 0.1, B; = 1.1, and C,,
= 0, 0.001 and 0.01.
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Figure A-17. B* as a function of t* for Cy = 0.5, B} = 1.1, and C,
= 0, 0.001 and 0.01.

A-17



| o
o Cu Lo []'0
0.8 I ‘
0.6 |
nq
0.4+ |
\\
.\I
0'2_ ‘\. .......... iy
\' i R — - — -
1 .

Figure A-18. B* as a function of ¢* for Cy = 0.9, B} = 1.1, and C,
= 0, 0.001 and 0.01.
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Figure A-19. D* as a function of t* for Cy = 0.1, B, = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-20. D* as a function of ¢* for Cy = 0.5, B} = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-21. D* as a function of t* for Cy = 0.9, B, = 0.1, and C,
= 0, 0.001 and 0.01.
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Figure A-22. D* as a function of t* for C; = 0.1, B, = 0.6, and C,
— 0, 0.001 and 0.01.
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Figure A-23. D* as a function of ¢* for Cy = 0.5, B} = 0.6, and C,,
=0, 0.001 and 0.01.
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Figure A-24. D* as a function of t* for Cy = 0.9, B = 0.6, and C,
= 0, 0.001 and 0.01.
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Figure A-25. D* as a function of t* for Cy = 0.1, B; = 1.1, and C,
= 0, 0.001 and 0.01.
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Figure A-26. D* as a function of t* for Cy = 0.5, B, = 1.1, and C,
= 0, 0.001 and 0.01.
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Figure A-27. D* as a function of ¢* for Cy = 0.9, B} = 1.1, and C,
= 0, 0.001 and 0.01.
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Appendix B

Comparison Between Numerical and Analytical
Solutions

The numerical solution based on (10), (12) and (14) is compared with the analytical
solution based on (17) and (19) as discussed in Section 4.

The case of C; = 0.9, B! = 0.1 and C, = 0.01 is used to estimate appropriate
values of At and Az in the numerical model. Figs. B-1 to B-3 show the numerical
and analytical variations of ¢¥, B* and D* during 0 < t* < 2 where At = 0.01
and 0.05 for the numerical solutions with Az = 0.01. These figures indicate that
the numerical solution with At = 0.01 is sufficiently accurate but that the numerical
solution with A¢ = 0.05 may not be acceptable. The numerical solution with At =
0.005 shown in Figs. B-3 to B-6 does not improve the numerical accuracy noticeably.
Use is hence made of At = 0.01 for the following computations. Figs. B-7 to B-9
show the comparisons of the numerical and analytical solutions for Az = 0.1 and 0.01.
The numerical solutions in the range of Az = 0.01-0.1 are found to be essentially the
same because the compared analytical solution is obtained for the case of cross-shore
uniformity. Use is thus made of Az = 0.1 in the subsequent computations.

The numerical solution with A¢ = 0.01 and Az = 0.1 is compared with the corre-
sponding analytical solution for the following cases:

e C;=0.1, B =0.1 and C, = 0.01 in Figs. B-10 to B-12.
e C;=0.1, B} = 0.6 and C, = 0.01 in Figs. B-13 to B-15.
e C;=09, By =0.1 and C, = 0.01 in Figs. B-16 to B-18.
e (;=10.9, B} = 0.6 and C, = 0.01 in Figs. B19 to B-21.
These figures indicate that the numerical solutions with At = 0.01 and Az = 0.1 are

sufficiently accurate although ¢% changes suddenly. The number of time steps on the
order of 100 during a storm is comparable to that used in COSMOS- 2D.
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Figure B-1. Analytical and numerical temporal variations of g for
At = 0.01 and 0.05 with Az = 0.01.
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Figure B-2. Analytical and numerical temporal variations of B* for
At = 0.01 and 0.05 with Az = 0.01.
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Figure B-3. Analytical and numerical temporal variations of D* for
At = 0.01 and 0.05 with Az = 0.01.
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Figure B-5. Analytical and numerical temporal variations of B* for
At = 0.005 and Az = 0.01.
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Figure B-6. Analytical and numerical temporal variations of D* for
At = 0.005 and Az = 0.01.
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Figure B-7. Analytical and numerical temporal variations fo g for
Az = 0.01 and 0.1 with At = 0.01.
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Figure B-8. Analytical and numerical temporal variations of B* for
Az = 0.01 and 0.1 with At = 0.01.
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Figure B-9. Analytical and numerical temporal variations of D* for
Az = 0.01 and 0.1 with At = 0.01.

B-9



C; =0.1 B* = 0.1 C, =0.01

) T T ] T ) T ) T
1 N
|
|
|
0.8 : analytical |
I
| - - - - numerical
: At = 0.01
0.6 l Ay = 0.1 S
N
* H
0.4 |
0.2 o
0r i

Figure B-10. Analytical and numerical temporal variations of g} for
Cy = 0.1, B} = 0.1 and C, = 0.01.
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Figure B-11. Analytical and numerical temporal variations of B* for
Cs = 0.1, B} = 0.1 and C,, = 0.01.
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Figure B-12. Analytical and numerical temporal variations of D* for
Cy = 0.1, B} = 0.1 and C, = 0.01.
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Figure B-13. Analytical and numerical temporal variations of ¢} for
C;=0.1, B} = 0.6 and C, = 0.01.
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Figure B-14. Analytical and numerical temporal variations of B* for
Cy=10.1, B} = 0.6 and C, = 0.01.
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Figure B-15. Analytical and numerical temporal variations of D* for
C; = 0.1, B} = 0.6 and C, = 0.01.
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Figure B-16. Analytical and numerical temporal variations of ¢} for
Cy = 0.9, B} = 0.1 and C; = 0.01.
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Figure B-17. Analytical and numerical temporal variations of B* for
Cy=0.9, B! = 0.1 and C,, = 0.01,
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Figure B-19. Analytical and numerical temporal variations of ¢ for
Cy = 0.9, B} = 0.6 and C, = 0.01.
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Figure B-20. Analytical and numerical temporal variations of B* for

Cy = 0.9, B! = 0.6 and C, = 0.01.
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Figure B-21. Analytical and numerical temporal variations of D* for
Cy =09, B} =0.6 and C,, = 0.01.
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