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3.19 Comparison of absolute group velocity Cga /C
n
ga vs normalized wave

number k∗ = k/kp,with kph = 1: Mouth of Columbia River (MCR).

Solid lines are based on the Taylor series expansion of Û(k) about kp,
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D.23 % error in wave action flux 100(1− |F̃T |/|F |) for current with
constant shear, with variation of k∗ and θ, with k∗ = k/kp, kph = 3:
Taylor series expansion of σ̃(k) and Û(k) around kp, β = 0. . . . . 170
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ABSTRACT

Interaction between surface gravity waves and mean flows has implications for

wave propagation, breaking and changes in the mean circulation pattern. These physi-

cal processes subsequently modify material transport and mixing in the coastal ocean.

Most of the existing wave-current interaction modeling approaches are based on the

assumptions of weak current or strong current with weak vertical shear. Few of the

former studies consider the interaction of waves with strongly sheared current, in which

the current vertical shear can affect linear wave dynamics at the leading order. In real

world, however, in coastal zones where fresh riverine water meets salty seawater, such

as in a river mouth, flow structures can be highly complex and the current becomes

strongly sheared due to stratification and tidal effects.

In this study we investigate the shortcomings in numerical modeling of waves

and vertically sheared currents. The influence of an arbitrary current profile on wave

dispersion and evolution equation is studied. We demonstrate that the widely used

depth-weighted average current value of Kirby & Chen (1989)(KC89), is not the correct

current speed to use directly in the action equation in SWAN or similar wave models,

as this approach neglects the contribution from the derivative of the wavenumber-

dependent weighted current during calculation of the group velocity. We correct this

error and also suggest a strategy for determining the current contribution to group ve-

locity as a function of frequency, employing a Taylor series expansion about the peak

frequency, significantly extending the range of accuracy of current information with

minimal additional programming or data passage. The expressions for energy density

and intrinsic frequency used to construct the wave action density are similarly inves-

tigated, using perturbation approximations in the general action balance equation of

Voronovich (1976). The results suggest that the action density N = E0/σ may be
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consistently constructed using the usual expression for energy density, E0 = 1/2ρga2,

together with a σ = ω − kŨ based on the KC89 current speed. The wave action flux

approximation also suggests the use of the current Û as the correct current speed to

be used in the advection velocity, which is the vector form of the advection velocity

suggested by KC89 and discussed by Banihashemi et al. (2017). We have further ex-

tended the suggested Taylor expansion around the peak wave number in a modeled

spectrum, with extensions covering the specification of action, flux and intrinsic fre-

quency as well as an extension to a general 2D horizontal setting. These results provide

an avenue for calculating wave action and action flux in spectral wave models, using a

compact set of information about the current field evaluated at the spectral peak wave

number. Lastly the coupled wave-current model NHWAV E, which couples the wave

model SWAN with a wave-averaged version of the non-hydrostatic model NHWAVE

Ma et al. (2012), is validated using laboratory experiments on wave-current interaction.

We have chosen the experiments done by Kemp & Simons (1982) on the interaction

of non-breaking waves with currents in a laboratory flume. The results from our 3D

non-hydrostatic model agree reasonably well with data from the experiment for wave

following currents.
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Chapter 1

INTRODUCTION

Wave-current interaction plays a key role in understanding coastal ocean dynam-

ics and near shore sediment transport. To analyze and model wave-current interaction,

it is useful to have a clear understanding of the relative magnitude of time and length

scales for both the waves and currents. In most frame works, waves are considered to

vary more frequently than the currents. Therefore, in many situations and over most

coastal and open-ocean areas, there is a clear separation between waves and currents

in horizontal space and time scales. This provides a basis for deriving the conservative

wave-current interaction equations. The theories have been incorporated in numeri-

cal models to include wind wave effects in ocean circulation without resolving surface

gravity wave motions for computational efficiency. Within the modeling system, ocean

circulation models are coupled with wave generation and propagation models to resolve

the effect of waves on circulation and vice versa. The spectral wave models include

evolution of wave action density affected by the mean flow, and the ocean circulation

models account for the wave-averaged forces driving or modifying the mean flow.

1.1 Current Effects on Waves

To describe the wave group evolution, wave action, which is defined as the total

wave energy divided by intrinsic frequency, is often adopted because of its conservative

characteristics without growth and dissipation effects (Bretherton & Garrett, 1968).

Existing, widely used wave models such as SWAN (Simulating Waves Nearshore, Booij

et al., 1999) are typically based on the underlying dynamics for monochromatic waves

being governed by the wave action balance of Bretherton & Garrett (1968).
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Studies have recently been carried out using SWAN model for example in the

Wadden Sea (Caires et al., 2006; Haskoning, 2007; Groeneweg et al., 2007), in which

model results were compared with buoy observations in tidal inlets. The objective of

these studies were to determine the predictive skill of SWAN for a number of severe

storm conditions, including a range of wind and wave directions, high water levels

and strong tidal currents through the tidal inlet. These hind casts indicated that, at

the buoy locations positioned around the tidal inlet, the largest discrepancies between

model results and observations are found at short fetches at the lee of the barrier islands,

and in the main tidal channel. Wave-current interaction was shown to have a significant

influence on wave conditions in the tidal channel. In particular, under conditions of

opposing current, wave heights and mean absolute wave periods were found to be

overestimated by the model Groeneweg et al. (2007). It is therefore important to

verify the performance of wave-current interaction in wave models such as SWAN, and

to investigate refinements to its implementation.

A specific aspect considered in the wave evolution models is the influence of the

current profile on the dispersion of the waves. Presently, the SWAN model assumes

a depth uniform current when computing wave-current interaction to evaluate the

propagation velocities. The effect of weak vertical current shear has recently been

accounted for in models using a depth-weighted average current value (Skop, 1987;

Kirby & Chen, 1989). Various studies including van der Westhuysen & Lesser (2007);

Ardhuin et al. (2008) have utilized this depth-weighted current Ũ(k) as the basis for the

wave-current interaction in propagation models. In application, this approach is often

further truncated to account for the limitations in the standard form for input into the

spectral wave model, which only allows the specification of a single current value at each

grid location. This limitation is often dealt with by using Ũ(kp) as the representative

value of Ũ , where kp denotes the wavenumber at the spectral peak frequency; see, for

example, Elias et al. (2012). The effect of choosing a single value for current velocity

based on the peak wave frequency is examined in Chapter 3 and an alternate strategy in

suggested, involving a Taylor series expansion about the peak frequency, which should

2



significantly extend the range of accuracy of current information available to the wave

model with minimal additional programming.

Presumably, the expression for action density needs to be investigated as well.

For the general case, Voronovich (1976) has described the conservation law, in the

geometric optics approximation, for an adiabatic invariant corresponding to the wave

action density. Recently Quinn et al. (2017) have presented an explicit formulation

of the wave action equation using known asymptotic solutions of the boundary value

problem which exploit the smallness of the current magnitude compared to the wave

phase velocity and/or its vertical shear and curvature; the adopted approximations

are shown to be sufficient for most conceivable applications. In the limit of vanishing

current shear, the new formulation reduces to that of Bretherton & Garrett (1968)

without shear, and the invariant is calculated with the current magnitude taken at the

free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

structure of the currents in wave modeling might lead to significant errors in wave

amplitude. In Chapter 4, using a modification of Kirby & Chen (1989)’s perturbation

solution for weakly-sheared currents, where the basic flow is allowed to be a strong

current with waves propagating at an arbitrary angle to the surface current direction,

we develop approximate expressions for the wave action density and action flux in

terms of a weighted integral over depth of the arbitrary current profile.

1.2 Wave Effects on Currents

The study of wave effects on currents was also developed to explain nearshore

current generation and modifications. The analytical expressions for surface wave force

and wave-current interaction can be classified into two types depending on the treat-

ment of the advection terms in the momentum equation. The formulations for wave

forcing are based on either the radiation stress concept (Longuet-Higgins & Stewart,

1960, 1961, 1962, 1964), in which forcing is expressed as the divergence of a stress

tensor expressing excess wave momentum flux, or on the vortex-force or CL formalism

Craik & Leibovich (1976), where wave forcing appears through a combination of terms
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expressing vortex force, divergence of wave volume flux, and the dissipation of wave en-

ergy. The difference between the concepts of radiation stress and vortex force lies in the

treatment of the advection terms q·∇q in momentum equation. The advection term,

combined with continuity equation, yields wave-averaged forces in radiation stress for-

malism according to q·∇q+q(∇·q) = ∇·(q⊗q), while another operation on the advec-

tion term yields the vortex force formalism according to q·∇q = 1
2
∇(q·q)−q×(∇×q).

The first term on RHS is the gradient of Bernoulli head, which contributes to the pres-

sure gradient force within the water column. The second term on RHS is called the

vortex force. The flow vorticity is defined as Ω = ∇× q.

The classical wave ’radiation stress’ concept were originally presented in terms

of depth-integrated and short wave-averaged equations. However, when it comes to 3D

ocean circulation modeling, it is required that radiation stress be depth-dependent as

a forcing term in the momentum equation. Mellor (2003) provided depth dependent

formulation for radiation stress terms which has been implemented in publicly avail-

able version of ROMS by Warner et al. (2008). Nevertheless, it is pointed out that

the formula by Mellor are inconsistent in a simple test case of shoaling waves with-

out energy dissipation due to inappropriate treatment of pressure terms in radiation

stress (Ardhuin & Belibassakis, 2008). In response, Mellor (2008) modified his original

formulation and provided a new approach for depth-dependent radiation stresses to

include a Dirac delta function at the sea surface. Bennis & Ardhuin (2011) showed

that the new formulation was inconsistent with the known depth-integrated momentum

balances in the presence of a sloping bottom. Although they did not discuss the origin

of the inconsistency, they stated that Mellor used a different averaging for the pressure

gradient term and for the advection terms of the same equation and believe that this

was the original reason for the problems discussed in their study. Finally, based on the

correct transformation of the horizontal pressure gradient in the equations of Mellor

(2003) and with the radiation stress tensor of Mellor (2008), Mellor (2011a) presented

a closed set of equations in σ-coordinates which are consistent with Longuet-Higgins

& Stewart (1964) and Phillips (1977). Recently Kumar et al. (2011) implemented the
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Mellor (2008) method including the updates presented in Mellor (2011a) in ROMS, and

evaluate an idealized situation of non-breaking and shoaling waves on a steep sloping

topography.

Another version of the formulation for wave forcing is the surface wave force ini-

tially derived by Garrett (1976) in the study of Langmuir circulation generation. The

wave driving forces include the wave dissipation term and the wave-averaged vortex

forcing term, identified later by Leibovich (1980) and Smith (1980) as the vertically

integrated form of the ’CL vortex-force’ derived by Craik & Leibovich (1976). Dinge-

mans et al. (1987) also presented a similar formulation of this type of wave driving

force. Smith (2006) extended the formulation of Garrett (1976) to include finite-depth

effects and provided some insight into physical interpretation of each forcing term in

depth-integrated equations. Newberger & Allen (2007) derive wave-averaged forces

consisting of a surface stress and a body force. The surface stress is proportional

to the wave energy dissipation. The body force includes one term that is related to

gradients of part of the radiation stress tensor and a second term that is related to

the vortex force and is proportional to a product of the mean wave momentum and

the vertical component of the mean vorticity vector. In addition, there is a nonzero

normal velocity at the mean surface that arises from the divergence of the mean Eu-

lerian wave mass flux. The formulation is applied to the extended Princeton Ocean

Model (POM) and validated with data from DUCK94 experiment. Shi et al. (2006)

formulate a Craik-Leibovich wave vortex force for a quasi-3D circulation model. The

study showed equivalent results when both models were run with continuous coupling

between currents and waves. Interestingly, this equivalence breaks down when coupling

is updated only intermittently, with a clear indication that the vortex force model re-

tains better accuracy with progressively weakened coupling. This result was thought

to be related to the form of the vortex force term, which can utilize the updated cur-

rent field and thus partially maintains continuous coupling during time-stepping of the

circulation model, even if corresponding updates to the Stokes drift are not available.
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McWilliams et al. (2004) showed a series of equations in different time scales for sur-

face waves, infragravity waves and low-frequency currents in a coupled system, and has

provided a careful derivation of the 3-D forcing due to waves acting on currents in a

vortex force formulation. Uchiyama et al. (2010) presented a wave-current interaction

model with the McWilliams et al. (2004) vortex force formulation using UCLA/ROMS

and SWAN. The model is validated using DUCK94 experimental data. Kumar et al.

(2012) applies the vortex force formulation by McWilliams et al. (2004) in the the cou-

pled ocean-atmosphere-wave-sediment transport (COAWST) modeling system Warner

et al. (2010), which couples USGS/ROMS with SWAN. Several subsequent studies

have used COAWST model with the inclusion of McWilliams et al. (2004) wave vortex

forces in estuaries and coasts under well-mixed conditions (e.g. Olabarrieta et al. 2011,

2014; Benetazzo et al. 2013). Recently, wave current interaction effects on mixing and

transport in river plumes has received considerable attention (Akan et al. 2017; Rong

et al. 2014) and is found to play important roles in modifying salinity stratification,

freshwater transport, and dispersal of river plumes. Gong (2018) have also studied

the effects of wave current interaction on salt transport and salt intrusion in estuaries

during storm events.

The limitation to weak vertical shear is still present in McWilliams et al. (2004)

formulation. Recently, Dong (2016) has presented a new framework to describe wave-

current interaction for arbitrarily sheared current. Following McWilliams et al. (2004),

the study has developed a theory to describe the interactions of waves with strongly

sheared mean flow. Starting with the multiple scale expansion, they derive governing

equations for both waves and mean flow dynamics by applying wave average. With the

presence of strongly sheared mean flow, the wave governing equations are manipulated

to get into the form of Rayleigh stability equations. The multiple scale expansion

and wave averaging are used to separate wave equations and mean flow equations.

The resulting formulation for mean flow leads to vortex force formalism incorporating

current shear effects.

As mentioned above, most of the existing wave-current interaction modeling
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approaches are based on the assumptions of weak current or strong current with weak

vertical shear. Few of the former studies consider the interaction of waves with strongly

sheared current, in which the current vertical shear can affect linear wave dynamics at

the leading order. In real world, however, in coastal zones where fresh reverine water

meets salty seawater, such as in a river mouth, flow structures can be highly complex

and the current becomes strongly sheared due to stratification and tidal effects (Figure

1.1).

Waves propagating against an opposing current can be stopped if the magnitude

of the current, in the direction of wave propagation, exceeds the group velocity of the

oncoming waves. This phenomenon is known as wave blocking, and the location where

the waves are blocked is called the blocking point. This characteristic feature of wave

blocking has drawn the interests of oceanographers and coastal engineers alike for their

ability to be used as signature patterns of underlying large scale motion (e.g. internal

waves) and for the navigational hazards these regions pose. Around the blocking point,

the wave climate transitions rapidly from steepening waves prior to the blocking point

to decaying waves beyond the blocking point. One such example of wave blocking can

be seen in Figure 1.2 at Indian River inlet. The photograph has been taken 3 hours

after high tide, and thus there is a strong current propagating out of the inlet. This

strong current blocks waves that are trying to propagate into the inlet.

Field measurements at river inlets are becoming more common with improve-

ments in field observation techniques and instruments. The Columbia River is the

largest river on the Pacific coast of North America, accounting for 77% of the total

drainage along the coast between San Francisco and the Strait of Juan de Fuca (Hickey

et al., 1998). The Columbia plume provides an excellent natural laboratory in which

existing numerical and analytical models can be tested and in which the importance of

various physical processes can be assessed. Strong river flow, wind forcing, and tidal

forcing cause the Columbia River plume to be an extremely dynamic feature, therefore

a wide variety of plume processes has been studied by many previous authors. Kilcher

& Nash (2010) describe the structure and explore the dynamics of the Columbia River
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Figure 1.1: Internal plume structure for a moderate ebb near low tide, Columbia
River. Upper panel: Log of shear squared (color) and vertical profiles of
density deficit ρ−ρ◦(black lines; ρ◦ = 1026.3kg/m3). Lower panel: East-
ward velocity (color) and log10ε (gray bars; tick marks indicate decades
above 10−7W/kg).Kilcher & Nash (2010)

tidal plume and front. Elias et al. (2012) have recently reported the first comprehensive

field observation (USACEMega-Transect Experiment, Moritz et al., 2007) and numeri-

cal modeling (DELFT3D-SWAN; Lesser et al., 2004) efforts for the Mouth of Columbia

River (MCR), with surface waves and wave-current interaction being one of their main

emphases. In their study, they demonstrated that it is not straight forward to model

wave-current interaction over a strongly vertically-sheared surface plume. The distri-

bution of wave height is sensitive to the choice of current intensity experienced by the

waves. They suggested that the wave-orbital weighted formulation developed by Kirby

& Chen (1989) is shown to have better model skill when comparing with measured

data.

Janssen & Herbers (2014) have conducted two pilot experiments in Raccoon

Strait located in San Francisco Bay (May and July 2011) and have collected a dataset

of wave-current interaction in this area. These pilot experiments were conducted to

better understand the current and wave regimes in the area (Figure 1.3). Surface

wave energy is enhanced in the blocking zone where the waves are relatively steep
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Figure 1.2: Wave blocking at Indian River Inlet, Delaware, USA, (Chawla & Kirby,
2002)

and breaking occurs. Thomson et al. (2014) have also presented observations of wave

breaking effects at the offshore front of the Columbia River plume. Their observations

show that wave breaking is an important source of turbulence at the offshore front,

which may contribute to plume mixing. The lateral gradient of current associated with

the plume front is sufficient to block (and break) shorter waves.

These initial observations show a complicated interaction between tidal currents,

stratification, topography and surface waves, the details of which are not yet fully

understood.The interactions between waves and arbitrary strong current can cause

significant effects to mass transport, large amplitude wave crests can cause damage to

coastal structures, and the turbulence induced by the kinematics can be dangerous for

maritime vessels. Since the existing wave-current interaction studies are not adequate

to address the strong and complex interactions occurring in wave-forced river out flows,

In locations such as a river inlet, an approach that can model the nonlinear effects

is needed. Such work requires theoretical development on wave-current interaction

which has been introduced in the work done by Dong (2016)(DK16 herein after). The
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Figure 1.3: Flow velocities observed using ship-board ADCP with the ship track in
along-strait direction. The incoming flood tide is accelerated over the sill
and plunges underneath the lighter bay water about 700m after the sill.
(Janssen & Herbers, 2014)

wave-current interaction theory has been applied in their work to a coupled system of

NHWAVE and SWAN (NHWAVE), with which our research starts.

1.3 Thesis Outline

The specific objectives of this study are (1) Finding possible ways to account

for current shear effects in the wave action conservation equation in existing wave

models such as SWAN and (2) Evaluating the performance of the model implementation

presented by DK16 in NHWAVE coupled model against wave flume experiments.

After a preliminary presentation of the results of the wave-current interaction on

strongly sheared mean flows theory presented by DK16 (Chapter 2), we will proceed in

Chapters 3 and 4 by describing the work done to incorporate a better representation of

frequency and direction-dependent group velocity and intrinsic frequency in the neigh-

borhood of the spectral peak, thus improving the present practice of using quantities

evaluated only at the spectral peak. Chapter 5 will give an introduction to the wave

spectrum model SWAN and the wave-averaged non-hydrostatic model NHWAVE for

nearshore and coastal ocean circulation followed by a test case to examine the validity

of the model.
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Chapter 2

WAVE CURRENT INTERACTION THEORY

In this chapter, we describe the procedure for separating wave and current

motions using a multiple-scale expansion. We start with the Euler equations and

decompose the motion into wave and current components. The current is treated as

slowly varying motion with longer scales in time and space compared to waves. Thus

mean flow dynamics can be separated from wave dynamics according to different scales.

Following Phillips (1977), any variables such as velocity, pressure, surface elevation and

vorticity can be separated into waves and current. We take φ for example. φ can be

written as the superposition of currents and waves.

φ = φ+ φ̃ (2.1)

where φ represents mean flow variable and φ̃ represents the wave variable. The mean

flow is separated from oscillatory flows by applying wave-average ′′ < · >′′ to the

variable in Eulerian framework, which is defined as the average over the wave phase.

< · >=
k0

2π

∫ 2π
k0

0

· dx =
ω0

2π

∫ 2π
ω0

0

· dt (2.2)

Mean flow variables remain while the oscillatory variables are assumed to be removed

after wave-averaging. This is an Eulerian mean method.

< φ >= φ (2.3)

< φ̃ >= 0 (2.4)
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The linear wave solution can induce other harmonics of oscillation due to nonlinearity.

We apply the WKB representation to the wave motion to include the these harmon-

ics. In general, we expand all dependent variables in multiple scales. The Eulerian

equations are then sorted into mean flow equations and wave equations.

2.1 Governing Equations

We consider incompressible, inviscid flow governed by the Euler equations. Due

to current vertical shear, wave motions are not typically irrotational. A turbulence

model and stratification effects can be added to our formulation later. We separate our

problem into horizontal and vertical directions by defining the coordinates (x, y, z, t) =

(x, z, t), velocity q = (u, v, w) = u+wiz and gradient vector∇ = (∂/∂x, ∂/∂y, ∂/∂z) =

(∇h, ∂/∂z). We use p for pressure, h for still water depth and η for instantaneous water

surface elevation. The governing equations and boundary conditions are given by

∂q

∂t
+ q·∇q +

1

ρ
∇p+ giz = 0 − h ≤ z ≤ η (2.5)

∇·q = 0; −h ≤ z ≤ η (2.6)

w = −u·∇hh; z = −h (2.7)

w =
∂η

∂t
+ u·∇hη; z = η (2.8)

p = 0; z = η (2.9)

The curl of the momentum equation leads to a vorticity equation, which is used to

describe the motion’s vorticity dynamics.

∂Ω

∂t
+ (q·∇)Ω = (Ω·∇)q; −h ≤ z ≤ η (2.10)

where vorticity is defined by Ω = ∇ × q, and may be written in terms of horizontal

and vertical components as (ξξξ, χ). In our problem, the motion consists of strong

mean flows with long wave contributions and narrow-banded surface gravity waves.

Weakly nonlinear surface gravity waves have small surface slope so that parameter
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ε = k0a0 � 1, where k0 is a representative wave number and a0 is a representative

wave amplitude. All the scaling in our problem is done based on parameter ε. The

oscillatory wave motion is described using complex function eiΘ = cos Θ+i sin Θ, where

Θ(x, t) is the wave phase function, with wave number and absolute frequency defined

by

k(x, t) = ∇hΘ(x, t)

ω(x, t) = −∂Θ

∂t
(x, t)

k and ω are assumed to be slowly varying over horizontal and temporal scales. Wave

number conservation is given by cross-differentiating Θ to obtain

∂k

∂t
+∇hω = 0 (2.11)

2.2 Multiple-scale Approach

In most cases, the spatial and temporal scales of variations of the current and

of average properties of the wave field are much larger than the period and wavelength

of individual waves. Thus the scales of wave and current variations may be treated

separately. We introduce multiple-scale format in horizontal scale x and temporal scale

t to describe the general modulations of variables,

x = x + εx = x + X (2.12)

t = t+ εt = t+ T (2.13)

We assume that motions contain both fast scale and slow scale variations. The fast

scales denoted by (x, z, t) are used to describe local wave-like behavior as well as vertical

variation, while slow scales are used to illustrate the slowly varying features of the mean

flow as well as properties of narrow-banded wave trains in horizontal space and time

denoted by (X, T ). The topography is also assumed to vary slowly in horizontal space

as h = h(X). In addition to the general multiple-scale approach, we apply a WKB
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theory to wave motions to facilitate the isolation of problems at each order (n) for each

harmonic frequency (m) as shown below, where n denotes ordering in ε and m denotes

the harmonic number. We expand the variable φ, for instance, as

φ =
∞∑
n=0

εnφn(x, z, t,X, T )

=
∞∑
n=0

εn
n∑

m=−n

φn,m(z,X, T )Em (2.14)

where E = eiΘ. We require φn,−m = φ∗n,m, where φ is any physical variable and ∗

denotes complex conjugation (c.c. thereafter), in order to obtain real-valued physical

quantities. Specifically, the mean flow is represented by terms with m = 0, while linear

waves are represented by m = 1. Quadratic waves appear in terms with m = 2 plus

slow-scale derivatives of linear wave terms. We note that wave terms with Em(m 6= 0)

are formally removed by wave-averaging. It is thus easy to identify current terms and

waves terms in the expansion. According to

φ =
∞∑
n=0

εnφn,0 = φ0,0(X, z, T ) + εφ1,0(X, z, T ) + ε2φ2,0(X, z, T ) + · · · (2.15)

φ̃ =
∑
n

∑
m6=0

εnφn,mE
m

= ε[φ1,1(X, z, T )E + c.c.] + ε2[φ2,1(X, z, T )E + φ2,2(X, z, T )E2 + c.c.] + · · ·

(2.16)

The instantaneous surface elevation η(x, t) consists of the wave-averaged com-

ponent η(X, T ) and the oscillatory component η̃(x, t,X, T ).

η = η + η̃ (2.17)

The total mean water depth seen by waves is d = h+ η̄, hence we expand the surface

boundary conditions in Taylor series about the slowly varying water surface level z = η̄,
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which is consistent with subsequent use of the theory in numerical models.

(·)z=η = (·)z=η̄ + η̃
∂

∂z
(·)z=η̄ +

η̃2

2

∂2

∂z2
(·)z=η̄ +O(ε3) (2.18)

In addition, both fast and slow scale variations are involved in our problem. To

simplify it, we use the relation between fast and slow scale coordinates x = X/ε, t = T/ε

and substitute for fast scale coordinates using slow scale coordinates. The horizontal

slow scale gradient is defined as ∇H . The local slow scale derivative is defined as

∂/∂T . The phase function then becomes Θ(x, t) = Θ(X, T )/ε, and wave number and

frequency are defined as

k = ∇hΘ(x, t) = ε∇H [
1

ε
Θ(X, T )] = O(1)

ω =
∂

∂t
Θ(x, t) = ε

∂

∂T
[
1

ε
Θ(X, T )] = O(1)

The governing equations are given with surface boundary conditions expanded at z = η

ε
∂u

∂T
+ ε(u·∇H)u + w

∂u

∂z
+
ε

ρ
∇Hp = 0; −h ≤ z ≤ η (2.19)

ε
∂w

∂T
+ ε(u·∇H)w + w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = 0; −h ≤ z ≤ η (2.20)

ε∇H ·u +
∂w

∂z
= 0; −h ≤ z ≤ η (2.21)

w = −εu·∇Hh; z = −h (2.22)

p+ εη̃
∂p

∂z
+
ε2η̃2

2

∂2p

∂z2
+
ε3η̃3

6

∂3p

∂z3
= O(ε4); z = η (2.23)

w + εη̃
∂w

∂z
+
ε2η̃2

2

∂2w

∂z2
+
ε3η̃3

6

∂3w

∂z3
= ε

∂η

∂T
+ ε(u + εη̃

∂u

∂z
+
ε2η̃2

2

∂2u

∂z2
)·∇Hη

+ O(ε4); z = η (2.24)

2.3 Wave-averaged Forces

With strong current and strong shear assumption, the current velocity can reach

the same magnitude as the wave phase speed, |u|/c0 ∼ O(1). The current vertical shear
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is comparable to absolute wave frequency, |∂u/∂z|/ω0 ∼ O(1). The wave amplitude is

assumed to be far less than wave length, or a0k0 = ε� 1. The non-dimensional wave

variables are of order O(ε).

Dividing the motions into waves and current in the momentum equation and

applying wave-averaging, we get the momentum equation for the mean flow alone,

given by

∂q

∂t
+ q·∇q +

1

ρ
∇p+ giz = −ε2 < q̃·∇q̃ >; −h ≤ z ≤ η (2.25)

The RHS term − < q̃·∇q̃ > is the wave-averaged forcing. It can be interpreted

either in terms of the radiation stress formalism or the C-L vortex force formalism.

In this study, we adopt the vortex force formalism since it gives a clearer physical

interpretation of the problem. Considering the relation q·∇q = ∇(q·q)/2−q×(∇×q),

we define

κ = ε2 <
1

2
(q̃·q̃) > (2.26)

(J, K) = ε2 < q̃× (∇× q̃) > (2.27)

where κ is Bernoulli head and (J, K) are vortex forces in horizontal and vertical direc-

tions, respectively. Therefore, the RHS term − < q̃·∇q̃ >= −ε2(∇κ + J + Kiz). The

body force is the combination of Bernoulli head gradient ∇κ and vortex force (J, K).

The Bernoulli head gradient represents the wave-induced effects associated with wave

set down. The vortex force represents wave refraction caused by the current field. The

form of the vortex force above is slightly different from the Craik-Leibovich definition

of vortex force, which is the distortion of current vorticity by the wave-induced Stokes

drift. The theory indicates that the wave vorticity is directly related to the current

vorticity and wave Stokes drift is derived from the wave orbital velocity w̃. Hence the

present form finally leads to the Craik-Leibovich vortex force with wave solutions.
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2.3.1 Leading order wave equation

The leading order wave equations (consistent with (n = 1,m = ±1) in equation

2.15) are given as follows. As we can see, current vertical shear appears in wave

momentum equation, which generates wave vorticity.

∂q

∂z
w̃ − iσq̃ +

ik

ρ
p̃ = 0; −h ≤ z ≤ η (2.28)

−iσw̃ +
1

ρ

∂p̃

∂z
= 0; −h ≤ z ≤ η (2.29)

∂w̃

∂z
+ ik·q̃ = 0; −h ≤ z ≤ η (2.30)

w̃ = 0; z = −h (2.31)

w̃ = −iσsη̃; z = η (2.32)

To get the Rayleigh (or inviscid Orr-Sommerfeld) stability equation, we multiply Equa-

tion (2.28) by k and take its vertical derivative ∂/∂z. After combining (2.29) - (2.30),

we have the Rayleigh equation for the vertical component of wave velocity w̃, given by

σ
∂2w̃

∂z2
− (

∂2σ

∂z2
+ k2σ)w̃ = 0; −h ≤ z ≤ η (2.33)

with combined surface boundary condition

σ2
s

∂w̃

∂z
− (σs

∂σ

∂z
+ gk2)w̃ = 0; z = η (2.34)

and bottom boundary condition (2.31). σs is the wave intrinsic frequency at mean

surface. The horizontal orbital velocity q̃ and pressure field amplitude p̃ are given in

terms of w̃ by

q̃(z) = − i
σ

[w̃
∂q

∂z
− σ2k

k2

∂

∂z
(
w̃

σ
)] (2.35)

p̃(z) =
iρσ2

k2

∂

∂z
(
w̃

σ
) (2.36)

The Rayleigh equation 2.33 has very few analytical solutions except for some
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special cases. An approximate solution can be obtained using the perturbation solu-

tions Kirby & Chen (1989), or by using a numerical approach following Fenton (1973).

Hence, Dong (2016)(DK16 herein after) follow the work done by Kirby & Chen (1989) in

terms of the perturbation solutions. The comparison between wave numerical solutions

and perturbation solutions based on measured current velocity profiles is discussed in

DK16 and results suggest that the perturbation solution up to O(ε) is a fairly good

approximation to wave solutions for the real current velocity profile. Wave-averaged

forces are provided with the perturbation solution instead of numerical solution to

avoid extra computation time. The details of the wave perturbation solution will be

provided further in section 2.4 along with the resulting wave forces. To obtain the wave

forces for weak current in section 2.5, we will rescale the governing equations with weak

current assumption, and reproduce part of the work done in McWilliams et al. (2004)

(MLR04 hereinafter).

2.4 Wave Vortex Force formalism by DK16

A formulation for wave-induced Bernoulli head and vortex force is given by

DK16 for the case of strong currents and strong shear. We intend to compare the

vortex force formulation of DK16 with weak current with shear assumption to the

vortex force formalism of McWilliams et al. (2004) in this chapter. Therefore we will

present the forces up to O(ε2) here which will be the leading order terms containing

current shear terms. In addition, the slow time derivatives in horizontal vortex force

are neglected since these terms are relatively small. The equations are rearranged as

below.

As mentioned before, the forcing terms in DK16 are originally in terms of the

wave vertical velocity w̃. Therefore in order to evaluate the forcing terms we need to

seek wave solutions. We seek solutions for the vertical component of the wave orbital

velocity

w̃ = −iσsaF (z) (2.37)
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where a is the amplitude of the wave, σs = ω − k·u(0) is the intrinsic frequency at

the mean water surface, and F (z) has constraints F (η) = 1, F (−h) = 0, defining the

vertical structure of w̃

The equations governing mean flow in the vortex force formulation in Cartesian

coordinates are given by

∂u

∂t
+ (u·∇H)u + w

∂u

∂z
+

1

ρ
∇Hp = −∇Hκ+ J (2.38)

∂w

∂t
+ (u·∇H)w + w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = −∂κ

∂z
+K (2.39)

∇H ·u +
∂w

∂z
= 0 (2.40)

w|−h + u|−h·∇Hh = 0 (2.41)

w|η −
∂η

∂t
− (u·∇H)η = ∇H ·Ust (2.42)

p|η = P (2.43)

Where Ust is the Stokes transport, which in turn is the depth integral of the Stokes

drift as defined in 2.47 and 2.48. The divergence of the depth-integrated Stokes drift,

∇H ·Ust, appears on the RHS of the kinematic surface boundary condition as a wave-

induced mass source/sink term (Hasselmann, 1971). The wave-averaged forces consist

of the gradient of Bernoulli head κ and vortex force (J, K). The depth-dependent con-

tinuity equation indicates the incompressibility of the flow with the wave part removed

after wave-averaged. The mean water surface elevation η includes wave setup/setdown.

P is the wave-averaged forcing term at z = η.

With the wave solution given by 2.37 the wave forcing terms presented in DK16

can be rearranged as follows. (For more detailed derivation, see chapter 4 in DK16)
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κ =
σs

2a2

4

(F,z2

k2
+

[
1 +

1

σ2(z)

(
|u,z|2 −

(k·u,z)2

k2

)]
F 2
)

(2.44)

J =
σs

2a2

4
iz ×

([
− 2F 2

σ2
u,z +

σk

k2

(F 2

σ2

)
,z

]
·∇Hξξξ +

σk

k2
(
F 2

σ2
),zχ,z

+
(2F 2

σ2
ξ,z + (k·ξ) k

k2
(
F 2

σ2
),z
)
·∇Hu− (k·ξ) k

k2
(
F 2

σ2
),z∇H ·u

+ ξξξc·∇H(
F 2

σ2
u,z) +

F 2

σ2
ξξξc·∇H(u,z)

)
− iz ×

ξξξ

σ
·∇H(

σs
2a2

4

σ2k

k2
(
F 2

σ2
),z)− iz × ust(z)χ (2.45)

K =
σs

2a2

4

(2F 2

σ2
u,z × ξξξ,z −

σ

k2
(
F 2

σ2
),zk× (u,z

k·ξξξ
σ

+ ξξξ,z)
)

(2.46)

ust =
σs

2a2

4

{[σk

k2
(
F 2

σ2
),z − 2

F 2

σ2
u,z
]
,z

+ (
F 2

σ2
),z(

k

k2
σ,z + u,z)

}
(2.47)

Ust =
σsa

2

4

(σk

k2
(
F

σ
),z − u,z

F

σ

)
+
a2

4
u,z(η) (2.48)

with the mean flow vorticity ξξξ and χ

ξξξ = iz × u,z (2.49)

χ = ∇H × u (2.50)

The dynamic surface boundary condition (2.43) is given by

p = − < η̃
∂p̃

∂z
>= −ρσs2a2F 2(η) / 2 = −ρσs2a2 / 2; z = η (2.51)

2.5 Weak current assumption and comparison to wave vortex force for-

malism by McWilliams et al. (2004)

The weak current assumption is usually used in the modeling of wave-current

interaction. In this section, we provide the wave-averaged forces for weak current with

shear and compare them to the form presented in MRL04. The vortex force formulation

with weak current assumption is implemented in our modeling approach in Chapter 5.

Two methods to obtain the wave forces for weak current are considered. One is
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following MRL04 and formulates the problem by assuming weak current at the begin-

ning. This will result in a reproduction of the work done in their 2004 paper. Instead

of rescaling the governing equations with weak current assumption, we focus on the

reduction of our wave-averaged forces based on perturbation solutions. The differences

between the two methods are how to present current effects on wave solutions. The

first method leads to the pure wave solutions at leading order and then presents the

current effect at order O(ε2) wave equations. The second method keeps current terms

at leading order wave equations, leaving the order O(ε2) wave equations current-free.

Perturbation solutions to the leading order wave equations will include current effects.

In this section, we adopt the second method. With weak current and weak shear

assumption |u|/c0 ∼ O(ε), the wave-averaged forces in previous section are largely

simplified as current related terms go at least one order higher. Following Kirby &

Chen (1989) the perturbation wave solutions gives

w = σsa
f0(z) + εf1(z)

f0(0)
(2.52)

f0(z) = sinh k(h+ z) (2.53)

f1(z) =
1

2kc0

[Ĩ1(0)− Ĩ1(z)− Ĩ2(0)

tanh kh
] sinh k(h+ z)

+
1

2kc0

Ĩ2(z) cosh k(h+ z) (2.54)

Ĩ1(z) =

∫ z

−h
k̂·u,zz(ξ) sinh 2k(h+ ξ) dξ

Ĩ2(z) =

∫ z

−h
k̂·u,zz(ξ)(cosh 2k(h+ ξ)− 1) dξ
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The wave-averaged forces can be reduced to

κ =
σs

2a2

4

(cosh 2k(h+ z)

sinh2 kd
+

1

kc0 sinh2 kd

∫ z

−h
k̂·u,zz sinh 2k(z − ξ)dξ

+
2 cosh 2k(h+ z)

c0 sinh2 kd

[
2k

∫ 0

−h
k̂·u sinh 2k(h+ ξ)dξ − 2k

tanh kd

∫ 0

−h
k̂·u sinh 2k(h+ ξ)dξ

+k̂·u|0 + k̂·u|−h
]

+
sinh 2k(h+ z)

kc0 sinh2 kd
(k̂·u,z|−h)

)
−
∫ z

−h
ust(ζ)dζ·u,z (2.55)

J = −wstu,z − iz × ustχc −∇H [

∫ z

−H
ust(ζ)dζ·u,z] (2.56)

K = −
∫ z

−h
ust(ζ)dζ·uc,zz = ust·u,z −

∂

∂z

(∫ z

−h
ust(ζ)dζ·u,z

)
(2.57)

with

ust =
a2σk

2 sinh2 kd
cosh 2k(z + h) (2.58)

Ust =
a2σk

4k sinh2 kh
sinh 2kd =

E

ρc

k

k
=
N

ρ
k (2.59)

wst(z) = −∇H ·
∫ z

−h
ustdz′ (2.60)

where E is the total wave energy and N is wave action. The last terms on the right

hand sides of 2.56 and 2.57 are pure gradient terms,and thus can be combined with

the Bernoulli head gradient, giving the final form of wave vortex force as

κ =
σs

2a2

4

(cosh 2k(h+ z)

sinh2 kd
+

1

kc0 sinh2 kd

∫ z

−h
k̂·u,zz sinh 2k(z − ξ)dξ

+
2 cosh 2k(h+ z)

c0 sinh2 kd

[
2k

∫ 0

−h
k̂·u sinh 2k(h+ ξ)dξ − 2k

tanh kd

∫ 0

−h
k̂·u sinh 2k(h+ ξ)dξ

+k̂·u|0 + k̂·u|−h
]

+
sinh 2k(h+ z)

kc0 sinh2 kd
(k̂·u,z|−h)

)
(2.61)

J = −wstu,z − iz × ustχ (2.62)

K = −
∫ z

−h
ust(ζ)dζ·uc,zz = ust·u,z (2.63)
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with the dynamic surface boundary condition same as 2.51. Comparing the results

to the widely used in ROMS/SWAN coupled model (Uchiyama et al., 2010; Kumar

et al., 2012) the vortex forces are identical and the the second and third line in the

bernoulli head equation 2.61 are additional terms compared to their Bernoulli head

equation. The wave induced pressure is also different from that in Uchiyama et al.

(2010), equation 9. These differences are thought to be due to different treatment of

the surface boundary condition in the wave motion solution. Our f1(z) in equation 2.54

is equal to zero at the surface where the same treatment can not be seen in MRL04.

The additional term added to f1(z) adds the extra terms in our bernoulli equation

while the value at the surface which is equal to zero will simplify our pressure to be

equal to 2.51. Note that in MRL04 the combined contribution of Bernoulli head is

separated in two parts of different order each. The higher order contribution is a

quasi static balance between the mean pressure, mean surface elevation and the wave

stresses, which is absorbed in the quasi static sea level component (Uchiyama et al.,

2010; Kumar et al., 2012). This term results from subtracting 2.51 from the first term

of 2.61 evaluated at the surface, which results in the quasi static sea level component

as

ηst = − ka2

2 sinh 2kd
(2.64)

The lower order quasi static balance is expressed as the Bernoulli head equal

to the second term in 2.61 in (Uchiyama et al., 2010; Kumar et al., 2012) whereas by

assuming weak current in DK16 vortex force formulation will result in five extra terms

presented in the second and third line of equation 2.61.

Implementing the vortex force wave forcing in our coupled wave-current model

NHWAV E will be discussed in Chapter 5.
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Chapter 3

APPROXIMATION OF WAVE ACTION FLUX VELOCITY IN
STRONGLY SHEARED MEAN FLOWS

The work presented in this chapter has been published in Ocean Modelling

Volume-116, Pages 33-47.

https://doi.org/10.1016/j.ocemod.2017.06.002. Rights to this article are pro-

vided in Appendix E.

3.1 Introduction

Important theoretical advances have been made in the last several decades which

have advanced our understanding of wave-current interaction in ocean circulation. The-

ories have been incorporated in numerical models with the main intent of including

wind wave effects in ocean circulation without resolving surface gravity wave motions

for computational efficiency. Within typical modeling systems, an ocean circulation

model is coupled with a wave generation and propagation model in order to determine

wave effects on currents and vice versa. The spectral wave models include the effect of

the mean flow in the computation of wave action flux, and the ocean circulation models

account for the wave-averaged wave forcing driving or modifying the mean flow.

Spectral wave models are usually based on the theory for waves in the presence

of depth-uniform currents. In the real world, however, currents are usually vertically

sheared to some degree. Recently, various studies (van der Westhuysen & Lesser, 2007;

Ardhuin et al., 2008) have suggested the use of a depth-weighted current Ũ(k) as the

basis for the wave-current interaction in propagation models, where Ũ(k) is the first
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order correction to the phase speed for an arbitrarily varying current U(z) and is given

by

Ũ(k) =
2k

sinh 2kh

∫ 0

−h
U(z) cosh 2k(h+ z) dz (3.1)

where h is the water depth and k is the wave number (Skop, 1987; Kirby & Chen,

1989). In application, this approach is often further truncated by using Ũ(kp) as the

representative value of Ũ for all wave components, where kp denotes the wavenumber

at the spectral peak frequency. This procedure is now included as an option in widely

used models such as Delft-3D and COAWST (Elias et al., 2012; Kumar et al., 2011,

2012). We remark here that the perturbation scheme of Kirby & Chen (1989), defined

originally for the case of weak current, can be straightforwardly modified to cover the

case of a strong current with weak additional shear. Assuming a fairly arbitrary split

between a depth uniform and depth varying current

U(z) = U0 + αU1(z); α� 1 (3.2)

and repeating the procedure used to develop the solution in Kirby & Chen quickly

establishes that the choice for leading order current speed is U0 = Ũ , with the details

of the overall solution maintained up to second order. The parameter α represents the

magnitude of current shear; a scaling analysis based on finite depth waves with hori-

zontal and vertical length scales proportional to k−1, leads naturally to an expression

α =
Ω

kUs
(3.3)

where Ω characterizes the maximum value of shear in the current profile, and Us is the

surface current speed. The expressions developed in both the perturbation solution

and the analytic solution for constant shear discussed below are both easier to interpret

using a slightly different expression

α =
Ωh

Us
(3.4)
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which is used throughout the remainder of this chapter.

The purpose of this chapter is to demonstrate the inapproprietness of the use

of the weighted current Ũ as the current component of the group velocity, and to

examine the effect of using either the correct or incorrect estimate of the current speed

evaluated only at the spectral peak frequency. We evaluate the accuracy of approximate

solutions in comparison to analytical or numerical solutions for the full theory based on

the Rayleigh stability equation. The theory described here is limited to unidirectional

propagation on a following or opposing current, and so currents and wave numbers

appear as scalars rather than vectors. General vector form will be further discussed in

chapter (4). In section 3.2, the problem for a linear wave in a uniform domain with

arbitrary current U(z) is established. We then outline the common approximations for

group velocity used in modeling and the errors resulting in these applications. In section

3.3, we evaluate the approximations for the analytic case of a wave on a current with

constant vorticity, and establish the consistency of the expressions for group velocity

derived from the perturbation solution of Kirby & Chen (1989). Section 3.4 examines

comparable results of the numerical solution for a current profile measured at the mouth

of the Columbia River (MCR) (Kilcher & Nash, 2010). In section 3.5, we evaluate the

shortcomings of practical approximations in existing coupled circulation-spectral wave

models, where it is typical to use only Ũ(kp) as the current speed. Finally, in section

3.6 we describe a strategy for providing a compact but significantly more accurate

representation of current advection velocity in SWAN or similar models, using a Taylor

series expansion of the expression for the wavenumber-dependent current speed about

the reference value at the peak frequency.

3.2 Theory and approximate expressions for the absolute group velocity

Cga

3.2.1 General theory

We consider the linearized wave motion of an incompressible, inviscid fluid,

with wave number k and phase velocity Ca = ωk/k2, propagating on a stream of
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velocity U(z) in finite water depth h. Current and depth variables are assumed to be

uniform in horizontal directions (Figure 3.1). ω denotes the absolute wave frequency

in a stationary frame of reference, which also fixes the value of U(z). We seek solutions

for the vertical component of the wave orbital velocity

w(x, z, t) = w̃(z)ei(k·x−ωt) (3.5)

The problem for the vertical structure of plane waves in a spatially uniform domain,

riding on a vertically sheared current U(z), is then given by an extension of the Rayleigh

equation to allow for an oblique angle between wave and current direction as well as

possible rotation of the current vector over depth

σ(z)(w̃
′′ − k2w̃)− σ′′

(z)w̃ = 0; −h ≤ z ≤ 0

σ2
sw̃

′ − [gk2 + σsσ
′
]w̃ = 0; z = 0 (3.6)

w̃ = 0; z = −h

where primes denote differentiation with respect to z and g is the gravitational constant.

The quantity σ(z) = ω − k ·U(z) represents a depth-varying relative frequency, with

σs denoting the value at the mean surface z = 0. The separate use of the kinematic

surface boundary condition for a surface wave of form η = a exp i(k · x− ωt) gives

w̃(0) = −iσsa.

The model (3.6) has been used in a number of studies of arbitrary or idealized

velocity distributions; see reviews by Peregrine (1976), Jonsson (1990) and Thomas

& Klopman (1997). For the general case of arbitrary U(z), Voronovich (1976) has

described the conservation law, in the geometric optics approximation, for an adiabatic

invariant corresponding to the wave action density. Evaluation of these results requires

knowledge of a solution to (3.6), however. Karageorgis (2012) has shown a method for

constructing expressions for the dispersion relation for waves on a number of vertical

vorticity distributions, but does not consider the further determination of the group
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Figure 3.1: definition sketch

velocity.

For the case of weak shear, solutions to (3.6) may be obtained using a pertur-

bation approach, described to leading order for deep water by Stewart & Joy (1974)

and extended to finite depth by Skop (1987) and to second order by Kirby & Chen

(1989). Considering deep water waves, Shrira (1993) has further demonstrated how

series solutions may be extended to high order. Alternately, numerical solutions may

be obtained using a shooting method due to Fenton (1973). In the following, we limit

ourselves to the evaluation of the first and second-order solutions presented in Kirby

& Chen (1989) and further limit ourselves to waves and currents propagating in the

same direction (General form is discussed in chapter 4). For definiteness, we suppose

that waves are propagating towards the right with c > 0 and k > 0, while the current

can be propagating in either ±x direction.

3.2.2 Perturbation solution of Kirby & Chen (1989)

Following Kirby & Chen (1989), we assume that the steady current velocity is

small relative to some measure of wave phase speed. Here, we use a Froude number

based on the surface velocity Us = U(0) defined by

F =
Us√
gh

; |F | � 1 (3.7)
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The wave phase speed is given by

Ca =
ω

k
= C0 + (F )C1 + (F 2)C2 +O(F 3) (3.8)

where we indicate ordering w/r F schematically and retain dimensional expressions for

now. C0 is the usual result for linear waves on a stationary water column, and is given

by

C0 =

√
g

k
tanh kh (3.9)

C1 and C2 arise from the current-induced Doppler shift, with C1 = Ũ in (3.1)

and C2 given by

C2 =
Ũ

2C0

[4kI1(0)− (1 + 2 cosh 2kh)Ũ ]

+
k2C0

2gf 2
0 (0)

∫ 0

−h
U2(z)[1 + 2 cosh2 k(h+ z)] dz (3.10)

+
2k3C0

gf 2
0 (0)

∫ 0

−h
[I2(z)I

′

1(z)− I1(z)I
′

2(z)] dz

with

I1(z) =

∫ z

−h
U(ξ) sinh 2k(h+ ξ) dξ

I2(z) =

∫ z

−h
U(ξ) cosh 2k(h+ ξ) dξ (3.11)

f0 = sinh k(h+ z)

To O(F 2), the absolute wave group velocity C̃ga determined from the perturbation

solution is given by

C̃ga =
∂ω

∂k
=
∂(kCa)

∂k
=
∂(kC0)

∂k
+ (F )

∂(kŨ)

∂k
+ (F 2)

∂(kC2)

∂k
(3.12)

The first, O(F 0) term on the right hand side is the usual expression for the current-free
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case, given by

Cg0 =
C0

2
(1 +G); G =

2kh

sinh 2kh
(3.13)

The second component on the RHS of (3.12) gives the expression

Û = Ũ+k
∂Ũ

∂k
= (2−G cosh 2kh)Ũ+

4k2

sinh 2kh

∫ 0

−h
(h+z)U(z) sinh 2k(h+z) dz (3.14)

which clearly differs from the apparent phase speed correction Ũ at O(F ). The re-

maining term at O(F 2) is derived in sections 3 and 4 for the specific cases studied

here.

It is clear that the expression

Cga = Cg0 + Ũ (3.15)

suggested for use by a number of authors, does not represent a consistent approximation

for the current component of the group velocity at O(F ). This point was made in the

original study of Kirby & Chen (1989), and we re-examine that conclusion in the

context of two cases in 3.3 and 3.4. The result that Û rather than Ũ is the correct

leading-order estimate of current velocity for use in the wave action equation is the

first main point of this study.

In the following sections, the validity of the first and second order perturbation

approximation will be examined for two cases; (1) a linear shear current, where the

analytical dispersion relation has been obtained from the Rayleigh equation by Thomp-

son (1949), and (2) a current profile measured at the mouth of the Columbia River

(Kilcher & Nash, 2010), where a numerical solution is found using a shooting method

described in Dong & Kirby (2012).

3.3 Wave on a current with constant shear

The linear problem for waves riding on a horizontally-uniform current with

constant vertical shear has an exact solution. For the case of co-linear wave and
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current flow, the wave motion is described by a potential, and no vorticity is developed

at the wave frequency (Thompson, 1949). Mäıssa et al. (2016) examine the resulting

expressions for group velocity in the co-linear case without and with surface tension,

and consider blocking conditions for waves on an opposing stream, corresponding to

the limit Cga → 0. For the case of waves propagating at an angle to the current

direction, Constantin (2011) and others have shown that a flow with constant vorticity

and irrotational wave motion does not exist. Ellingsen (2016) points out that this result

simply implies that the waves are then described by a rotational flow with vorticity

fluctuating at wave frequency. The resulting problem is completely described by (3.6)

with additional work needed to develop an expression for the vorticity. Ellingsen (2016)

considers the case of deep water and develops expressions for the resulting horizontal

vorticity; the extension to finite water depth is described by DK16; see section 3.1.2.

We limit attention here to the co-linear case and let

U(z) = Us + Ωz = Us(1 + α
z

h
) (3.16)

where Us is the surface velocity, Ω is the constant current shear and α is the current

shear parameter defined in (3.4). The exact dispersion relation, written in terms of the

phase speed relative to surface velocity Crs = Ca − Us, is given by (Thompson, 1949)

C2
rs = (gh− αUsCrs)

tanh kh

kh
(3.17)

The exact expression for the absolute group velocity Ce
ga = ∂ω/∂k is found from (3.17)

to be

Ce
ga = Us +

(
g(1 +G)− (αUs/h)CrsG

2g − (αUs/h)Crs

)
Crs (3.18)

Introducing the Froude number F = Us/
√
gh, we normalize the group velocity and

phase speed by (gh)1/2 and obtain

Ce
ga√
gh

= Ce∗
ga = F +

(1 +G)− αFGC∗rs
2− αFC∗rs

C∗rs (3.19)
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where C∗rs = Crs/
√
gh. Using (3.17) leads to

C∗rs =
1

2
(
√

4µ+ α2F 2µ2 − αµF ) (3.20)

with µ defined as

µ =
tanh kh

kh
(3.21)

Turning to the perturbation solution of Kirby & Chen (1989), we obtain results

to O(F 2) and compare them to the full solution to determine their range of validity.

The dimensionless O(1) phase speed and group velocity are given by

C∗0 =
√
µ; C∗g0 =

1

2

√
µ(1 +G) (3.22)

At O(F ), the depth weighted current Ũ and it’s derivative with respect to k are given

in dimensionless form by

Ũ∗ =
Ũ√
gh

= F (1− αµ
2

);
∂Ũ∗

∂k
= α

F

2

µ

k
(1−G) (3.23)

giving a leading order current contribution to the group velocity

Û∗ =
Û√
gh

= F

(
1− 1

2
αµG

)
(3.24)

Finally, at O(F 2), the correction to the phase speed is given by

C∗2 =
1

8
α2F 2µ3/2 (3.25)

The O(F 2) correction to the group velocity is then

C∗g2 =
1√
gh

∂(kC2)

∂k
=

1

16
F 2α2µ3/2(3G− 1) (3.26)
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The results for the complete expressions for group velocity are collected here for con-

venience:

Exact Ce∗
ga = F +

(1 +G)− αFGC∗rs
2− αFC∗rs

C∗rs (3.27a)

O(F ) C̃∗ga =
1

2

√
µ(1 +G) + F

(
1− 1

2
αµG

)
(3.27b)

O(F 2) C̃∗ga =
1

2

√
µ(1 +G) + F

(
1− 1

2
αµG

)
+

1

16
F 2α2µ3/2(3G− 1) (3.27c)

It may be verified after some tedious algebra that the resulting expression C̃∗ga

agrees with the expansion of the exact result (3.27a) truncated at either O(F ) or O(F 2)

as desired. The perturbation solution is thus consistent with the full solution to the

order considered, with a clear indication that the commonly used Ũ is not the correct

advection velocity to use in the wave action equation.

3.3.1 Following currents F > 0

The results for the first and second order perturbation solutions expressed in

(3.27) are compared to the full theory in Figure 3.2 for various choices of α and for

F > 0, corresponding to currents flowing in the direction of wave propagation. (Values

of 0 ≤ |F | ≤ 1 and 0 ≤ α ≤ 1 represent variation from weak to strong current and weak

to strong shear, respectively. The values here are chosen purely for example). Both

the first and second order perturbation solutions are quite good approximations to the

full solution, with little indication that there is a need to use the O(F 2) correction in

practice.
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Figure 3.2: Wave group velocity comparison Cga/C
e
ga vs relative depth kh: linear

shear current. Solid lines indicate O(F 2) approximation; dashed lines
indicate O(F ) approximation.
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Figure 3.3: Ratio of first order approximations Ũ and Û to the second order correction
(Û∗ + C∗g2) for various choices of current shear α and Froude number F .

Solid lines are for the consistent O(F ) contribution Û∗, while dashed lines
are for the depth weighted current Ũ∗, used inconsistently as the current
component of the group velocity.

Figure 3.3 compares the first order approximations Ũ∗ and Û∗ to the second

order correction (Û∗ +C∗g2) for various choices of α and F . It can be seen that, as the

current becomes more sheared, the error of neglecting the term k∂Ũ/∂k increases.

3.3.2 Opposing currents F < 0 and blocking

For the case of an opposing current with F < 0, the group velocity of the wave

train is decreased by the current. When the current becomes strong enough to reduce

the group velocity to zero (or Cga → 0), wave blocking occurs and waves are unable to

transport energy in the direction of propagation. Results for the case of constant shear
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are discussed in Mäıssa et al. (2016). We investigate the validity of the perturbation

solution in predicting the blocking current speed by setting the absolute group velocity

to zero in each expression in (3.27). Using the exact expression (3.27a), we obtain the

following nonlinear equation for blocking of waves

F 2 (αC∗rs) + F
(
αGC∗rs

2 − 2
)
− (1 +G)C∗rs = 0 (3.28)

which is solved numerically in MATLAB. The long wave limit for the exact solution is

given by

kh→ 0 : Fb =
−1

(1− α)1/2
(3.29)

which is singular for α = 1, where the current speed is reduced to zero at the bot-

tom. This singularity results from the linearization of the problem with respect to the

wave motions. A more complete examination of the critical Froude number Fc in a

hydraulic flow with constant vertical shear yields the result Fc = −1/(1−α+α2/12)1/2,

where criticality corresponds to blocking of upstream propagation of information by

infinitesimal waves.) The O(F ) approximation, obtained from (3.27b), is given by

Fb =
µ1/2(1 +G)

(αµG− 2)
(3.30)

with long wave asymptote Fb = −1/(1− α/2). This long wave limit is a valid leading

order estimate for the exact result (3.30) only in the limit of small shear α; the source

of this additional restriction is not immediately clear in the context of the small F

restriction in the perturbation solution. It is noted that a re-ordering of the problem

(3.6) to allow for O(1) current speeds but with a small shear restriction recovers the

same perturbation series to the order given here, and thus the small shear limitation

is perhaps a better interpretation in the context of the large F values associated with

blocking.

Results for the first order approximation are shown in Figure 3.4 in comparison

to the full theory. Exact and O(F ) approximate solutions for the blocking current
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Figure 3.4: Blocking current Froude number vs corresponding relative depth kh for
various choices of current shear α. (Solid lines) exact solution, (dashed
lines) O(F ) approximation.

speed show significant deviations for values of kh < 1. For small values of α, (3.30)

may be approximated by Fb = −1/(1 − α/2), in agreement with the perturbation

solution.

At O(F 2), solving the quadratic equation for Fb resulting from (3.27c) gives the

expression

Fb =
−B + [B2 − 4AC]1/2

2A
(3.31)

with

A = α2µ3/2(3G− 1); B = 16

(
1− 1

2
αµG

)
; C = 8µ1/2(1 +G) (3.32)

Real-valued solutions for Fb only exist for positive values of the discriminant B2−4AC.

Since µ and G are both functions of kh, it is simpler to solve the equation B2 = 4AC
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for a critical shear αc as a function of kh; doing so gives

αc =
4
[(

3
2
G2 −G− 1

2

)1/2 −G
]

µ (G2 + 2G− 1)
(3.33)

Using (3.33) in (3.31) then gives a critical blocking Froude number Fbc for each kh,

given by

Fbc =
−B
2A

= −
8
(
1− 1

2
αcµG

)
α2
cµ

3/2(3G− 1)
(3.34)

with the O(F 2) solution for blocking breaking down for α > αc at each kh. The long

wave results are given by

kh→ 0 : αc = 2(
√

2− 1) ≈ 0.828; Fbc = −(2 +
√

2) ≈ −3.414 (3.35)

with the solution breaking down at smaller current speeds with increasing kh and α,

as indicated by the dash-dot curve in Figure 3.5.

Figure 3.6 compares the first and second order perturbation solutions to the

exact solution for various choices of F < 0 and α. The solutions are compared for

a range of kh values corresponding to unblocked waves range before the waves are

blocked by the current. Both first and second order perturbation solutions are accurate

predictors of group velocity for current speeds up to the blocking condition when shear

α is small; however, as indicated above, the approximations become weak for long

waves and values of dimensionless shear much in excess of α = 0.5.

3.4 Columbia River velocity profile

In this section we compare the group velocities obtained from different approxi-

mations using a measured current profile from the mouth of the Columbia River (MCR).

The Columbia River is well known for it’s large freshwater discharge and the resulting

development of a rapidly moving, buoyant plume during ebb tide conditions. Here, we

select a sample velocity profile collected by a pole-mounted ADCP during the RISE

(River Influences on Shelf Ecosystems) project (Kilcher & Nash, 2010). The profile,
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Figure 3.5: Blocking current Froude number Fb vs corresponding relative depth kh for
various choices of current shear α. Solid lines show the exact solution,
dashed lines are the O(F 2) approximation. The dash-dot line shows
the locus of Fbc values where the second order solution breaks down, as
indicated in (3.31).

shown in Figure 3.7, represents a maximum ebb condition for the time frame covered

by the file. The normalized shear parameter for this current profile is α ∼ 8 which

indicates a strongly sheared current.

We consider the idealized case of wave propagating landward against the op-

posing current at Columbia river mouth. We follow a general procedure of fitting

polynomials to either measured profiles or profiles taken from gridded model results in

order to establish a basis for computing weighted current values. Expressions below

are based on the form

U(z) = Us

N∑
n=0

an(
z

h
)n (3.36)

with current speed referenced to the surface value Us and with dimensionless an’s. The

relative depth is assumed to be varying between kh ∼ 0.5 to kh ∼ 3. Calculations

here are carried out using N = 6, with the fitted profile for the demonstration case

also shown in Figure 3.7. Results for expressions for Ũ , Û , C2 and Cg2 resulting
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Figure 3.7: Columbia River current profile during ebb tide. Solid line is measured
data (Kilcher & Nash, 2010) and the dashed line is a 6th order polynomial
fit to the data.

from evaluating the perturbation solutions after introducing the expansion (3.36) are

presented in Appendix A.

3.4.1 Numerical solution

In the absence of an analytic solution for the original problem (3.6), a numerical

method is used to solve the Rayleigh equation. We first introduce normalized vertical

shape functions L(z) = σ(z)/σs for the relative frequency and f(z) = w̃/(−iσsa),

where a is wave amplitude. (3.6) becomes

f
′′ − (k2 +

L
′′

L
)f =0; −h ≤ z ≤ 0

f =0; z = −h (3.37)

f
′
=(L

′
+
gk2

σ2
s

)f ; z = 0

We then introduce a non-dimensional vertical coordinate ẑ = z/h following
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Fenton (1973) and define a new dependent variable

Q(ẑ) =
f

hf ′ (3.38)

The problem is then reduced to a Riccati equation

dQ

dẑ
=1− γ2Q2; −1 ≤ ẑ ≤ 0;

γ2(ẑ) =(kh)2 +
L

′′

L

Q =
σ2
s

(gk2h+ L′σ2
s)

; ẑ = 0; (3.39)

Q =0; ẑ = −1

The Riccati equation is solved using a shooting method (Fenton, 1973; Kirby & Chen,

1989; Dong & Kirby, 2012), with the absolute frequency ω determined from the value

of Q(0). We then calculate the derivative of the absolute frequency w/r k using a

central difference method to evaluate the group velocity Cn
ga numerically.

Cn
ga =

∂ω

∂k
≈ ω(k + ∆k)− ω(k −∆k)

2∆k
(3.40)

3.4.2 Comparison of numerical and perturbation results

Using the expressions in Appendix A, group velocity comparisons based on

first and second order perturbation approximations are shown in Figure 3.8. The

perturbation solutions are seen to be fairly good approximations. Figure 3.9 compares

the incorrect first order approximation Ũ and the consistent first order approximation

Û to the second order correction (Û + Cg2). The neglected term k∂Ũ/∂k is shown to

be as big as 40% of the second order perturbation correction, indicating the magnitude

of the error involved in using Ũ instead of Û as the estimate for current velocity in the

wave model. At the same time, Û provides a fairly accurate estimate of the current

component of the group velocity when compared to the higher order O(F 2) result.
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3.5 Common approximations in modeling

Choices for current values to be used in evaluating current effects on waves have

historically included depth-averaged current U or surface current Us. More recently, as

discussed above, several investigators have suggested using the depth-weighted current

Ũ as the choice for effective current (van der Westhuysen & Lesser, 2007; Ardhuin

et al., 2008; Warner et al., 2010). Lesser (2009) introduced the procedure of using a

single value Ũ(kp) instead of the frequency dependent Ũ(k) to represent the current

used for all frequency-directional components, where kp is the wavenumber at peak

frequency; this procedure is included as an option in Delft-3D (Lesser, 2009); see also

discussions in Elias et al. (2012). The approach has also been introduced in ROMS

(Warner et al., 2010).

As has been mentioned above, direct use of Ũ as a replacement for depth aver-

aged velocity incurs an error of O(F ) in action flux conservation. In this section, we

examine the limitations of these approximations for both the analytic and numerical

cases considered above. We also consider a fourth choice of Û(kp), the correct estimate

of the advective current component to O(F ), but evaluated only at the peak frequency.

We assume that the spectrum is narrow banded in the sense that |k − kp| / kp � 1

for any k within the energetic part of the spectrum and also select three peak wave

numbers corresponding to kph = 1, 2 and 3. Figures 3.10, 3.11 and 3.12 compare the

validity of these approximations for the linear shear current, while Figures 3.13,3.14

and 3.15 show the same comparison for the MCR current profile. It can be seen that

although the depth weighted current Ũ(kp) gives a better approximation compared

to the choice of depth-average or surface current, the effect of neglecting the term

k∂Ũ / ∂k can still cause significant errors even at the peak frequency. It should also be

noted that, despite the fact that Û(kp) is a more fundamentally accurate choice near

the spectral peak, it still produces a comparable rate of deviation between modeled

and true group velocity estimates with increasing ∆k. This would indicate the po-

tential need to represent frequency dependence in Û in applications to broad-banded

frequency spectra, unless a more advantageous strategy can be developed using values
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computed at the peak frequency alone. We explore such an extension in the following

section.

3.6 An improved approximation based on Taylor expansion about kp

The comparisons of the group velocity approximations in previous sections have

indicated that significant errors may be incurred by neglecting either the contribution

of the term k∂Ũ/∂k to the group velocity at O(F ) or the wavenumber dependence of Û .

For the remainder of this discussion, it should be clear that we advocate the use of the

velocity Û in place of Ũ in any coupled wave-current modeling system. In this section,

we describe a possible strategy for additionally recovering wavenumber dependence in

Û using only values calculated at the peak wavenumber kp, thereby minimizing the

amount of additional information to be passed from the circulation model to the wave

model.

The Taylor expansion of Û(k) about the peak wavenumber kp is given to leading

order by

Û(k) = Û(kp) +
dÛ

dk

∣∣
kp

(∆k) +O(∆k2) (3.41)

∆k = k − kp (3.42)

Using the relation between Û and Ũ indicated in (3.14), we obtain

Û(k) = Ũ(kp) + kp
∂Ũ

∂k

∣∣∣
kp

+ ∆k

[
∂Ũ

∂k

∣∣∣
kp

+
∂Ũ

∂k

∣∣∣
kp

+ k
∂2Ũ

∂k2

∣∣∣
kp

]
+O(∆k)2

= Ũ(kp) +
∂Ũ

∂k

∣∣∣
kp

[2k − kp] + kp
∂2Ũ

∂k2

∣∣∣
kp

∆k +O(∆k)2 (3.43)

To O(∆k), the group velocity is then given by

Cga =
C0

2
(1 +G) + Û(k) (3.44)

This procedure retains the effect of the wavenumber dependence of Ũ but requires the
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Figure 3.10: Wave group velocity comparison Cga /C
e
ga vs normalized wave number

k∗ = k/kp, with kph = 1: linear shear flow. Solid lines are using

Û(kp), dashed lines are based on Ũ(kp), dots indicate the depth averaged
approximation and the circles are only using the surface value Us.
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Figure 3.11: Wave group velocity comparison Cga /C
e
ga vs normalized wave number

k∗ = k/kp, with kph = 2 : linear shear flow. Solid lines are using

Û(kp), dashed lines are based on Ũ(kp), dots indicate the depth averaged
approximation and the circles are only using the surface value Us.
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Figure 3.12: Wave group velocity comparison Cga /C
e
ga vs normalized wave number

k∗ = k/kp,with kph = 3: linear shear flow. Solid lines are using Û(kp),
dashed lines are based on Ũ(kp), dots indicate the depth averaged ap-
proximation and the circles are only using the surface value Us.
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Figure 3.13: Wave group velocity comparison Cga /C
n
ga vs normalized wave number

k∗ = k/kp,with kph = 1: MCR velocity profile. Solid lines are using

Û(kp), dashed lines are based on Ũ(kp), dots indicate the depth averaged
approximation and the circles are only using the surface value Us.
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Figure 3.14: Wave group velocity comparison Cga /C
n
ga vs normalized wave number

k∗ = k/kp,with kph = 2: MCR velocity profile. Solid lines are using

Û(kp), dashed lines are based on Ũ(kp), dots indicate the depth averaged
approximation and the circles are only using the surface value Us.
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Figure 3.15: Wave group velocity comparison Cga /C
n
ga vs normalized wave number

k∗ = k/kp, with kph = 3: MCR velocity profile. Solid lines are using

Û(kp), dashed lines are based on Ũ(kp), dots indicate the depth averaged
approximation and the circles are only using the surface value Us.
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passage of only one or two additional coefficients to the wave model, depending on

whether expressions based on Û or Ũ are employed. The extra data can then be used

in the wave model to compute frequency and direction-dependent current values for

use with each component wave.

The accuracy of the approximation is compared to prediction of group velocity

using Û(k) evaluated only at the peak wavenumber as

Û(kp) = Ũ(kp) + kp
∂Ũ

∂k

∣∣∣
kp

(3.45)

For the linear shear case, the Taylor series coefficients are given by

∂Ũ

∂k
= α

Us
2

µ

k
(1−G)

∂2Ũ

∂k2
= α

Us
2

µ

k2
[G2(cosh 2kh− 1) + 2G− 2] (3.46)

For the numerical case, the first two derivatives of Ũ are obtained from (A.9)

and (A.27).

Comparisons for both analytic and numerical cases are shown in Figures 3.16-

3.18 and 3.19 -3.21 for three different cases of kph = 1, 2 and 3. Considering a narrow-

banded spectrum in frequency or wave number, it is seen that the Taylor series approach

provides a good estimate of the group velocity while including the first order correc-

tion to the group velocity, as explained in (3.9), and evaluating it for just one peak

wavenumber shows rapid deviation from the exact solution. The Taylor series approx-

imation could thus be used as the basis for estimating frequency-dependent current

values, with the wave model being able to construct a reasonable estimate of the group

velocity using a minimal set of additional information.

3.7 Discussion and Conclusions

The main aims of the present work have been to emphasize that the depth-

weighted current value Ũ in (3.1) is not the appropriate leading-order estimate for
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Figure 3.16: Comparison of absolute group velocity Cga /C
e
ga vs normalized wave

number k∗ = k/kp,with kph = 1: linear shear flow. Solid lines are based

on the Taylor series expansion of Û(k) about kp, dashed-dotted lines

are based on Û(kp) and dashed line is using Ũ(kp).
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Figure 3.17: Comparison of absolute group velocity Cga /C
e
ga vs normalized wave

number k∗ = k/kp,with kph = 2: linear shear flow. Solid lines are based

on the Taylor series expansion of Û(k) about kp, dashed-dotted lines

are based on Û(kp) and dashed line is using Ũ(kp).
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Figure 3.18: Comparison of absolute group velocity Cga /C
e
ga vs normalized wave

number k∗ = k/kp,with kph = 3: linear shear flow. Solid lines are based

on the Taylor series expansion of Û(k) about kp, dashed-dotted lines

are based on Û(kp) and dashed line is using Ũ(kp).
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Figure 3.19: Comparison of absolute group velocity Cga /C
n
ga vs normalized wave

number k∗ = k/kp,with kph = 1: Mouth of Columbia River (MCR).

Solid lines are based on the Taylor series expansion of Û(k) about kp,

dashed-dotted lines are based on Û(kp) and dashed line is using Ũ(kp).
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Figure 3.20: Comparison of absolute group velocity Cga /Cn
ga vs normalized

wave number k∗ = k/kp,with kph = 2: Mouth of Columbia River

(MCR).Solid lines are based on the Taylor series expansion of Û(k)
about kp, dashed-dotted lines are based on Û(kp) and dashed line is
using Ũ(kp).
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Figure 3.21: Comparison of absolute group velocity Cga /C
n
ga vs normalized wave

number k∗ = k/kp,with kph = 3: Mouth of Columbia River (MCR).

Solid lines are based on the Taylor series expansion of Û(k) about kp,

dashed-dotted lines are based on Û(kp) and dashed line is using Ũ(kp).
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current velocity in expressions for group velocity, and that the use of velocity evaluated

at peak frequency can lead to rapid accumulation of error at frequencies away from

the peak. The first point has been demonstrated by showing that the retention of

wavenumber dependence in Ũ when differentiating the approximate dispersion relation

to obtain group velocity leads to results which are consistent with an exact solution

in the case of waves on a current with constant shear, and with a numerical solution

computed using a candidate, strongly sheared current profile from MCR.

In order to illustrate the effect of an incorrect choice of current on wave predic-

tions, we end with an example of a shoaling calculation based monochromatic waves

propagating in constant depth against an increasingly strong opposing flow. We take

the MCR current profile shown in Figure 3.7 as reference U(xm, z) and construct a

current distribution

U(x, z) = U(xm, z)
x− x0

xm − x0

(3.47)

where x0 represents an offshore starting point and the wave shoals in the interval

x0 ≤ x ≤ xm. Using wave action conservation for waves on a depth uniform current

then gives a wave height distribution

H(x)

H0

=

√
Cg0
Cg(x)

σ(x)

σ0

(3.48)

where subscripts 0 denote initial values at x0 and H is waveheight, with energy density

E = 1/8ρgH2. Figure 3.22 shows results for cases with Cg and σ evaluated using

current values Ũ , Û , U and Us. The relative accuracy of the result based on Û has

been established in Section 4 and is used here as the reference for the three remaining

choices. Results are shown for incident waves with periods ranging from 6 to 12 seconds.

As would be expected, the prediction based on Û deviates the most from the value

based on depth-averaged current U for shorter waves, where the influence of the larger

currents near the surface is enhanced, and from the value based on surface current

Us the most for longer waves, where the weighting over depth becomes more uniform.
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The prediction based on Ũ is always closer to the correct answer than predictions

made using surface or depth-averaged values, but errors are still significant and can be

corrected using the proper expression Û .

The second point is cautionary in nature, and we have proposed a method for

extending the range of model accuracy without imposing a massive increase in required

data exchange between circulation and wave models.

The results here are limited to an examination of the group velocity Cga and do

not address the corresponding approximations for wave action density. In particular,

it is important to determine whether the action density can be approximated using

a simple form N = E0/σ
∗, with E0 = 1/2ρga2 based on depth-uniform currents and

σ∗ = ω − kU∗ with U∗ related to the available weighted forms of U in some simple

manner. This problem has also been recently considered Quinn et al. (2017).

In the next Chapter, Using a modification of Kirby & Chen (1989)’s perturbation

solution for weakly-sheared currents, where the basic flow is allowed to be a strong

current with waves propagating at an arbitrary angle to the surface current direction,

we develop approximate expressions for the wave action density and action flux in

terms of a weighted integral over depth of the arbitrary current profile.

Further, the theory described in this Chapter was limited to unidirectional prop-

agation on a following or opposing current, and so currents and wave numbers appear

as scalars rather than vectors. The expressions for depth-weighted currents given here

are extended to two horizontal dimensions for use in modeling, and the Taylor series

expansion about peak wavenumber similarly has been developed in full vector form.

These extensions have been developed and utilized in an extension of the SWAN wave

model, which will be further discussed in Chapter 5.
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Figure 3.22: Wave shoaling H(x) /H0 for waves on an opposing current of the form
shown in Figure 3.7. Results are shown for four choices of current values,
each used as a representation of depth-uniform current in determining
wave action. Û : solid line; Ũ : dashed line; U : dots; Us: circles.

61



Chapter 4

APPROXIMATION OF WAVE ACTION CONSERVATION IN
VERTICALLY SHEARED MEAN FLOWS

The work presented in this chapter has been published in Ocean Modelling

Volume 143, 101460.

https://doi.org/10.1016/j.ocemod.2019.101460. Rights to this article are pro-

vided in the Appendix E.

We develop asymptotic expressions for wave action density and action flux,

using an extension of Kirby & Chen (1989)’s perturbation solution for weakly-sheared

currents allowing for a basic flow with Froude number F = U/
√
gh = O(1) but with

weak vertical shear. The accuracy of the expressions for action density and flux are

established by comparison to analytic results for a current with constant shear, and

to numerical results for a field case involving a buoyant ebb-tidal plume with strong

vertical shear and for a case involving a numerically determined profile for a wind-driven

current. We compare our results to those from recent work of Quinn et al. (2017), and

find unresolved discrepancies in that prior work. We provide additional suggestions for

efficiently implementing the required extensions in coupled wave/circulation models

using a Taylor series expansion based on conditions at peak frequency and direction.

These results generalize the previous work of Banihashemi et al. (2017) to motions in

two horizontal dimensions, and cover the determination of the wave action.

4.1 Introduction

Significant advances have been made in the numerical modeling of wave-current

interaction in recent decades. An important component in these advances has been the
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recognition of wave action as the fundamental conserved quantity expressing the wave-

averaged energy of a slowly-varying wave train. The simplest description is typically

based on the underlying dynamics for monochromatic waves, governed by the wave

action balance of Bretherton & Garrett (1968) and given by

N,t +∇h ·F = 0 (4.1)

where subscripted commas denote partial differentiation. For the case of depth uniform

mean current U, action densityN = E/σ and action flux F = Ncga, where E is energy

density, σ = ω − k ·U =
√
gk tanh kh is intrinsic frequency, h and k = |k| are depth

and wavenumber, and cga = ω,k = σ,k + U is the absolute group velocity vector in

stationary coordinates.

Phase-averaged spectral wave models typically calculate wave properties based

on the linear theory for waves superposed on depth-uniform currents. However, currents

in the field are occasionally strongly sheared over the vertical, leading to the need for

a treatment of the rotationality or shear in the flow field. An approximate treatment

for the effect of current shear may be based on a perturbation approach that has been

developed through a sequence of papers (Stewart & Joy, 1974; Skop, 1987; Kirby &

Chen, 1989; Ellingsen & Li, 2017), with Kirby & Chen (1989, hereafter referred to as

KC89) providing a solution to second order for the finite depth case for currents that

are assumed to deviate only weakly from depth-uniformity.

The main utility of the approximate solution has been the specification of a

depth-weighted current Ũ, specified by Skop (1987) and KC89 and given by (4.12) be-

low, as a representative depth-uniform current for determining intrinsic frequency and

action density in spectral wave models (van der Westhuysen & Lesser, 2007; Ardhuin

et al., 2008). As pointed out in the original study of KC89 and recently elaborated on

by Banihashemi et al. (2017, hereafter BKD17), the depth weighted current Ũ does

not represent a consistent approximation for the current contribution to the group

velocity cga at leading order. BKD17 demonstrate the inappropriateness of the use
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of the weighted current Ũ as the current speed in the expression for absolute group

velocity, and establish the accuracy of the alternate value Û which follows naturally

from consideration of the dependence of Ũ on wavenumber k when differentiating the

dispersion relation to get group velocity. The accuracy of this result provides a target

for determining appropriate expressions for the group velocity for use in estimating

wave action flux.

Models for spectral wave conditions more commonly solve for N (x, t, σ, θ) us-

ing a spectral action balance equation, which, for Cartesian coordinates, is given by

(Hasselmann, 1973)

N,t +∇h · (Ncga) + (cσN ),σ + (cθN ),θ =
S

σ
(4.2)

where the third and forth terms represent transport in spectral space (σ, θ). Expres-

sions for these propagation speeds are taken from linear wave theory (Whitham, 1974;

Dingemans, 1997) for waves superimposed on depth-uniform currents. The right hand

side of the equation represents source and sink terms associated with wave generation,

dissipation and nonlinear wave-wave interactions. The introduction to each source term

included in SWAN, for example, can be found in Booij et al. (1999). In applications

using wave models which take as input a single Eulerian current vector at each grid

point from the circulation model, this approach, based on a wavenumber-dependent

current speed, is often simplified by using the current value at the peak wave frequency

or wavenumber, Ũ(kp) (for example, Elias et al., 2012), or at some weighted-average

wavenumber value. BKD17 further examine the effect of using either the correct or

incorrect estimate of the current speed evaluated only at the spectral peak frequency.

The study suggested an alternate strategy, involving a Taylor series expansion of the

depth-weighted current about the peak frequency, which significantly extends the range

of accuracy of current information available to the wave model with minimal additional

transfer of data between wave and circulation models.

In this study, the change in the estimate of action density and action flux due to
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current shear is investigated, using asymptotic approximations of the Voronovich (1976)

action balance equation obtained using a strong-current extension of the KC89 pertur-

bation solution. In section 4.2, the problem for a linear wave in a horizontally-uniform

domain with arbitrary current U(z) is established. In section 4.3 and B, KC89’s per-

turbation solution for weakly-sheared currents is modified to allow for steady currents

which are strong and oriented at arbitrary angles to the wave propagation direction.

Approximate expressions for the wave action density and action flux are then devel-

oped following a procedure described in Appendix B. The approach is similar to that of

Quinn et al. (2017), although our results differ significantly. In section 4.4, we evaluate

the approximations for the analytic case of a wave on a current with constant vorticity,

and establish the consistency of the expressions for action and action flux derived from

the perturbation solution of KC89. Section 5 considers an application to a field case

involving a strongly sheared vertical profile measured in the Mouth of the Columbia

River (Kilcher & Nash, 2010). In Section 6, we extend the proposed Taylor series ex-

pansion of the expressions for the wavenumber-dependent approximations about the

reference value at the peak frequency, originally presented in BKD17, to include wave

directionality and the variation in intrinsic frequency appearing in the denominator

of the action density. The differences between our results and those of Quinn et al.

(2017) are discussed in section 4.7, along with suggestions for further work. A Supple-

ment provides a number of plots comparing action density and flux estimates based on

the usual depth-uniform current expressions and using the surface or depth-averaged

currents as the representative values.

4.2 General theory

We consider the linearized problem for periodic surface waves in an incompress-

ible, inviscid fluid, with wave number k and phase velocity ca = (ω/k)k̂, propagating

on a stream of velocity U(z) in finite water depth h. Here, ω denotes the absolute

wave frequency in a stationary frame of reference, which also fixes the value of U(z).

A unit vector pointing in the direction of wave propagation is defined as k̂ = k/k. The
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problem is formulated in terms of the vertical component of the wave orbital velocity,

written in complex form as

w(x, z, t) =
w(z)

2
ei(k·x−ωt) + c.c. (4.3)

where c.c denotes the complex conjugate. The problem for the vertical structure of

plane waves in a spatially uniform domain is then given by an extension of the Rayleigh

equation to allow for an oblique angle between wave and current direction as well as

possible rotation of the current vector over depth,

σ(z)(w,zz − k2w) = σ,zz(z)w; −h ≤ z ≤ 0 (4.4a)

σ2(0)w,z(0)− [gk2 + σ(0)σ,z(0)]w(0) = 0 (4.4b)

w(−h) = 0 (4.4c)

where g is the gravitational constant. The quantity σ(z) = ω − k ·U(z) represents a

depth-varying relative frequency. We subsequently denote the values of current U(0)

and intrinsic frequency σ(0) at the mean surface z = 0 by Us and σs, respectively.

The amplitude of w may be related to surface displacement amplitude a through the

kinematic surface boundary condition linearized w/r the fluctuating motion, given by

η,t + Us · ∇hη = w(0) (4.5)

with η given by

η(x, t) =
a

2
ei(k·x−ωt) + c.c, (4.6)

leading to the relation w(0) = −iσsa. This result can be extended to cover the full

water depth by introducing a dimensionless shape function f(z) according to

w(z) = −iσsaf(z); f(−h) = 0, f(0) = 1 (4.7)
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The form of (4.4a) is intended to indicate that the problem is simply solvable

for the case of current profiles without curvature, or σ,zz = 0. The model (4.4a)-(4.4c)

has been used in a number of studies of arbitrary or idealized velocity distributions; see

reviews by Peregrine (1976), Jonsson (1990) and Thomas & Klopman (1997). For the

general case of arbitrary U(z), Voronovich (1976) derived a conservation law, in the

geometric optics approximation, for an adiabatic invariant corresponding to the wave

action density, with N and F in (4.1) given by

N = −ρ
4

∫ 0

−h

1

σ2k2
σ,zz|w|2dz + ρ

[(
g

2σ3
+

1

4σ2k2
σ,z

)
|w|2

]
z=0

(4.8a)

F =
ρ

4

∫ 0

−h

(
− U

σ2k2
σ,zz +

1

σk2
U,zz −

2k

k2

)
|w|2dz

+

{
ρ

[
U(

g

2σ3
+

1

4σ2k2
σ,z)−

1

4σk2
U,z +

gk

2σ2k2

]
|w|2|

}
z=0

. (4.8b)

These results may be written in more compact form using the substitution (4.7), giving

N =
E0

σs

[
1 +

σs
2gk2

(
σ,z(0)− σ2

s

∫ 0

−h
σ−2σ,zzf

2dz

)]
(4.9a)

F =
E0

σs

[
Us + crs

(
1− σ2

s

g

∫ 0

−h
f 2dz

)
+

σs
2gk2

(
−A(0) + σ2

s

∫ 0

−h
σ−2A,zf

2dz

)]
(4.9b)

where E0 = (1/2)ρga2 is the energy density for a wave on a depth-uniform current,

crs = (σs/k)k̂ is the wave phase velocity relative to the surface current, and

A(z) = σ(z)U′(z)− σ′(z)U(z) (4.10)

The adiabatic invariant N in (4.8a) or (4.9a) is not clearly in the form of wave

energy divided by frequency, as expected from the work of Bretherton & Garrett (1968),

but takes on this form in cases where analytic results for w̃ are available, such as the

special case of waves on a current with constant vertical shear (Jonsson et al., 1978).
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Additionally, the flux vector F in (4.8b) or (4.9b) isn’t clearly in the form of action

density times group velocity, Ncga, but can also be shown to be in this form for the

constant shear case.

Analytic solutions for progressive waves for the problem (4.4a)-(4.4c) are limited

to the cases of currents with constant vertical shear, including the uniform-over-depth

limit of zero shear. For more complex profiles, results may be obtained using per-

turbation solutions due to Stewart & Joy (1974) for deep water or Skop (1987) for

finite depth, with solutions extended to second order by KC89. Shrira (1993) has fur-

ther demonstrated how series solutions for deep water may be extended to high order.

Ellingsen & Li (2017) have extended the basis for perturbation solutions to include

currents with constant shear in the leading order solution. Alternately, numerical solu-

tions may be obtained using a variety of methods, including shooting methods (Fenton,

1973; Dong & Kirby, 2012) or an iterative approach to the boundary value problem

described by Li & Ellingsen (2019), used below in Section 4.5.

4.3 Approximate solution and analysis of action and action flux expres-

sions

KC89 considered the propagation of a wave train which was colinear with the

mean current, and assumed that F = U/c � 1, where F represents a Froude number

for the mean flow, U describes the current magnitude, and c is a reference phase speed,

usually taken to be
√
gh. Here, we consider the case of arbitrary orientation of wave

and current, and allow for strong currents F = O(1), in which case the current enters

the wave dispersion relation at leading order. This generalization of the results of Skop

(1987) and KC89 has also been described previously by Dong & Kirby (2012) and

Ellingsen & Li (2017). The results are repeated here as a basis for discussion of the

approximate forms for action density and flux. We also modify the treatment of the

surface boundary condition for f(z) from prior studies in order to simplify numerical

applications.
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4.3.1 Scaling framework and series solution

An appropriate scaling of the problem and the resulting perturbation solution

is described in B, and leads to a problem characterized by parameters F (describing

the strength of the current), ε (characterizing the magnitude of current shear), and µ

(characterizing the ratio of water depth to wavelength). Here, we consider the case

of µ, F = O(1) and ε � 1, which allows for the development of a formally ordered

expansion in powers of ε. The solution to the resulting problem is carried out to O(ε)

in B. In particular, the intrinsic frequency σ is approximated by

σ(z) = ω − k ·U(z) = (ω − k · Ũ)− εk ·U1(z) = σ̃ + εσ1(z) (4.11)

where

Ũ =
2k

sinh 2kh

∫ 0

−h
U(z) cosh 2k(h+ z)dz (4.12)

and U1(z) = U(z)− Ũ. The vertical velocity w is given to O(1) by

w(z) = −iσ̃af0(z) (4.13)

with

f0(z) =
sinh k(h+ z)

sinh kh
(4.14)

and the dispersion relation

σ̃2 = gk tanh kh (4.15)

The leading-order correction to the vertical shape function f is given by

f1(z) =
1

2σ̃
[I1(0)− I1(z)− (I2(0)/ tanh kh)] f0(z) +

I2(z)

2kσ̃
f0,z(z) (4.16)

where, in contrast to KC89 or Quinn et al. (2017), we retain the homogeneous part of

the solution for f1(z) in order to specify a boundary condition f1(0) = 0, as discussed
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in B. The integrals in (4.16) are given by

I1(z) = sinh−1 kh

∫ z

−h
k̂ ·U,ξξ(ξ) sinh 2k(h+ ξ) dξ

I2(z) = sinh−1 kh

∫ z

−h
k̂ ·U,ξξ(ξ)(cosh 2k(h+ ξ)− 1) dξ (4.17)

The solution for w up to O(ε) is then given by

w̃ = −iσsa[f0(z) + f1(z)] (4.18)

with σs = σ̃ + σ1(0) = σ̃ − k · U1(0) = σ̃ − k · (Us − Ũ). For later use, the depth

dependent intrinsic frequency σ(z) can also be written as

σ(z) = σs − k · (U(z)−Us) (4.19)

4.3.2 Approximate expressions for action density and flux

Results presented here favor a framework where quantities are defined primarily

in a frame moving with the velocity Ũ, with associated intrinsic frequency σ̃. This

choice is not unique, and is often replaced by representations based on conditions at

the water surface. A particular example is that of Quinn et al. (2017), who developed

asymptotic expressions forN and F by starting from (4.8a) and (4.8b) and introducing

expansions for w, σ (or phase speed C), and for the amplitude of their w relative to

surface wave amplitude a.

Here, we pursue a different approach starting from (4.9a) and (4.9b), where the

original expressions have been simplified using the transformation (4.7) and the known

properties of the problem prior to expansion. This transformation and the simplified

expressions (4.9a) and (4.9b) are still an exact description of the original problem. In

order to assess the difference between the two choices of reference frames, we develop a

generic approximation which specifies neither, and then specialize it to the two frames

of interest. The basic development of the framework is described in C, and leads to
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(C.4) and (C.18) for action density N0 and flux F0 in which a final choice of reference

frame velocity and leading order dispersion relation has not been made. As in Quinn

et al. (2017), the choice of surface conditions as a reference leads to an expression for

action density containing an O(ε) component, where ε here is basically similar to ε5 in

Quinn et al. The expression is given here by (C.19) or

N ∗ =
E0

σs

[
1 + ε

(σs − σ̃)

σs

]
(4.20)

This expression is similar in form to (4.2) in Quinn et al. (2017), but the O(ε) compo-

nents in the two studies do not appear to have a close correspondence. This is discussed

further in section 4.7.1. In contrast, the approximation resulting from the choice of the

depth-weighted current reference frame gives the estimate (C.20) or

Ñ =
E0

σ̃
+O(ε2) (4.21)

This result was suggested by KC89 based on an analysis of the constant shear case of

Section 4.4, but was not formally established there as a general result. We note that

the two formulas (4.20) and (4.21) are asymptotically equivalent to within the accuracy

of the approximation, which can easily be established by substituting between σs and

σ̃. However, actual numerical values from the two expressions are seen to diverge in

particular examples, as will be shown for a linear shear profile in section 4.4 and for a

wind driven current in section 4.7.1.

It is clear, from these results, that a formulation in terms of σ̃ and Ũ is a more

compact version of the approximation. Similar treatment for the action flux (C.18)

leads to the expressions

F∗ =
E0

σs

[
Û + cgrs + ε

(
Us

σs
+

k̂

k
(1−G)

)
(σs − σ̃)

]
+O(ε2) (4.22)

71



and

F̃ =
E0

σ̃

[
Û + c̃gr

]
+O(ε2) (4.23)

We note the striking result that both versions of the approximate action flux identify

Û = Ũ + k̂(k · Ũ,k) as the correct current advection velocity. The appearance of Û

results from the treatment of the integral of the product of the zeroth and first order

shape functions f0 and f1; see (C.13) - (C.17). The current Û is the vector form of the

advection velocity suggested by KC89 and discussed recently by BKD17. This result

may be obtained directly from the definition of group velocity,

cga = ω,k = (σ + k · Ũ),k

= k̂σ,k + Ũ + k̂
(
k · Ũ,k

)
= cgr + Û (4.24)

Unlike the expressions (4.20) and (4.21) for N , the expressions for F do not

appear to be consistent with each other to the order of approximation considered. An

attempt to rearrange (4.22) to the form of (4.23) to within cancellation of O(ε2) terms

leads to the result

F∗ =
E0

σ̃

[
Û + c̃gr + ε

k̂

k
(1−G)(σs − σ̃)

]
(4.25)

where the remaining term at O(ε) results from the treatment of the I4 integral in (C.11)

(or the first occurrence of (1 − G) in (C.18) ), where no O(ε) expansion term occurs

in the surface-oriented expression, whereas the O(ε) expansion term occurring in the

Ũ-oriented expression cancels the second (1 − G) term contributed by the integral I5

in (C.17). A similar attempt to work from (4.23) to (4.22) also leaves an O(ε) residual

which differs from the one in (4.22).

The results (4.20) and (4.22) for N ∗ and F∗ are expected to be far accurate

representations of action density and flux than simple constructs based on surface or

depth-averaged currents, but the relative accuracy of the two asymptotic approaches
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remains to be examined. We will take up this question again in sections 4.4 and 4.7.1.

4.4 Waves on currents with constant mean-flow shear

In this section, we examine the accuracy of the asymptotic expressions forN and

F for the case of waves on a current with constant vertical shear. This case has been

studied extensively, with the basic solution described for co-linear propagation in one

horizontal dimension (Thompson, 1949) and subsequently extended to two horizontal

dimensions for waves oblique to the current (Craik, 1968; Ellingsen, 2016, among

others). Ellingsen (2016) provides a clear description of the influence of wave orbital

motion on the vorticity field for the case of oblique waves. Jonsson et al. (1978) gave

expressions for the action density and flux for the 1D case of co-linear wave and current;

the extension to the general case is given below based on the theory of Voronovich

(1976). In this section, we determine the accuracy of the approximate expressions in a

space covering variations of kh, F , θ (representing the angle between the wave direction

and the surface current), and a shear parameter α defined below. Consider a current

profile with constant shear (and possible rotation) given by

U(z) = Us + Ωz (4.26)

The current shear Ω does not have to be collinear with either Us or k (Figure 4.1). In

this case, the BVP (4.4a-4.4c) simplifies and is given by

σ(w,zz − k2w) = 0; −h ≤ z ≤ 0

σ2
sw,z(0)− (gk2 − σsk ·Ω)w(0) = 0 (4.27)

w(−h) = 0

The possibility of σ(z) taking on a value of zero at a critical level is not typically

of interest in surface wave dynamics; see also Ellingsen & Li (2017). The solution to
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Figure 4.1: Definition sketch for linear shear current. The angle between the sur-
face velocity and wave direction is θ while the angle between the surface
current and current vertical shear is β
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(4.27) is given by

w(z) = −iσsaf(z) (4.28)

u(z) = σsa

(
1

σ
(k̂(k̂ ·Ω)−Ω)f(z) +

k̂

k
f,z(z)

)
(4.29)

p(z) =
ρσsa

k

(
(k̂ ·Ω)f(z) +

σ

k
f,z(z)

)
(4.30)

with vertical shape function

f(z) =
sinh k(h+ z)

sinh kh
(4.31)

and with dispersion relation

σ2
s = (gk − σsk̂ ·Ω) tanh kh (4.32)

Constant current shear affects the vertical structure of wave orbital velocity and wave

pressure by modifying the dispersion relation and twisting wave horizontal velocity in

the current shear direction. Absolute and relative phase speed vectors are related by

ca = crs + k̂(k̂ ·Us) (4.33)

where ca = cak̂ = (ω/k)k̂ and crs = crsk̂ = (σs/k)k̂, with subscripts s denoting values

at the SWL z = 0. From (4.32), an expression for crs is given by

crs =
1

2k

[
±(4gk tanh kh+ (k̂ ·Ω tanh kh)2)1/2 − k̂ ·Ω tanh kh

]
(4.34)

Inserting the wave solutions in (4.9a) and (4.9b) gives exact expressions for the action

density and flux, given by

N =
E0

σs

(
1− k̂ ·Ωcrs

2g

)
(4.35)
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and

F = Ncga; cga = Us + cgrs (4.36)

The relative group velocity cgrs is given by

cgrs = σs,k =
k̂[g(1 +G)crs] + [k̂(k̂ ·Ω)(1−G)−Ω]c2

rs

2g − (k̂ ·Ω)crs
(4.37)

Turning to the perturbation solution of Section 4.3, we obtain results to O(ε) in

the Ũ reference frame and compare them to the full solution to determine their range

of validity. The weighted current Ũ is given by

Ũ = Us −Ω
tanh kh

2k
(4.38)

and the corresponding flux advection velocity Û is then given by

Û = Ũ + k̂(k · Ũ,k) = Us −
tanh kh

2k

(
Ω− k̂(k̂·Ω)(1−G)

)
(4.39)

with action Ñ and action flux F̃ determined by (4.21) and (4.23).

The % error 100(1 − Ñ /N ) for the first order perturbation approximation of

the action density (4.21) compared to the exact result from (4.35) is shown in Figure

4.2 for 0.1 < kh < 10, −π/2 < θ < π /2, relative angle β = 0 and for different

choices of current strength and shear. Additional results for β = π/4 and π/2 are

provided as Figures D1 and D2 in the Supplement, Appendix D. (Angles θ and β

represent the orientation of k and Ω relative to the surface current Us, as indicated in

Figure 4.1. Current strength is represented through a Froude number based on surface

current speed, F = |Us|/
√
gh, while shear is represented by dimensionless parameter

α = h|Ω|/|Us|.

The results show a considerably improved accuracy in the predicted action den-

sity, compared to values constructed using other common approaches, such as using

the surface velocity Us, with N given by Ns = E0/σs; Figures D3 - D5 in Supplement)
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Figure 4.2: % error in wave action density 100(1−Ñ /N ): linear shear with variation
of kh and θ, first order perturbation approximation, β = 0.

or depth-averaged velocity U, with N given by N = E0/σ, σ = ω − k · U; Figures

D6 - D8 in Supplement). Opposing currents require a more complex calculation of

blocking conditions; this limit is not crucial to the development here and deserves it’s

own treatment in connection with wave propagation near buoyant plumes and other

frontal features; see BKD17 for examples of the relative magnitudes of errors in those

cases.

An extensive comparison of the correct and approximate action flux velocities

for the 1D case has been discussed in BKD17. Figure 4.3 shows the composite error of

|F̃ | as a function of kh and θ for β = 0 using the first order perturbation approximation,
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with additional results for β = π/4 and π/2 in Figures D9 and D10 in the Supplement.

Results for the same range of parameters using the surface and depth-average current

values are shown in Figures D11 - D16 in the Supplement.

As mentioned is section 4.3.2, the relative accuracy of the two asymptotic ap-

proaches in the frame of reference based on the surface current and the depth weighted

current remains to be examined. Figure 4.4 and 4.5 provide a simple comparison of

equations (4.20) vs (4.21), and (4.22) vs (4.23). The comparison is done for a linear

shear profile with variation of α, F and kh, with θ = 0 and β = 0. The gain in accuracy

provided by the estimates Ñ and F̃ is shown, in spite of the two expressions being

asymptotically equivalent within the accuracy of the approximation.

4.5 Columbia River velocity profile

In this section, we compare the action densities obtained from different approx-

imations using a measured current profile from the Mouth of the Columbia River

(MCR), where fresh riverine water meets salty seawater and the current becomes

strongly sheared due to stratification and tidal effects. Here, we select a sample ve-

locity profile collected by a pole-mounted ADCP during the RISE project (Kilcher &

Nash, 2010). The profile, shown in Figure 4.6, was also used in BKD17, and represents

a maximum ebb condition for the time frame covered by the file. The water depth is

h = 25m, the normalized shear parameter for this current profile is α ∼ 8, which in-

dicates a strongly sheared current, while the Froude number is F ∼ 0.15. The current

profile is assumed to be unidirectional.

We consider the case of waves propagating landward against the opposing cur-

rent. We follow a general procedure of fitting polynomials to either measured profiles

or profiles taken from gridded model results in order to establish a basis for computing

weighted current values. Expressions below are based on the form

U(z) = |Us|
N∑
n=0

an(
z

h
)n (4.40)
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Figure 4.3: % error in wave action flux 100(1− |F̃ |/|F |): linear shear with variation
of kh and θ, first order perturbation approximation, β = 0.
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Figure 4.4: Comparison of action density estimates: linear shear with variation of
kh, with θ = 0 and β = 0. Dashed dotted lines indicate Ñ /N using
the asymptotic expression (4.21) in the frame of reference based on the
depth weighted current, dashed lines indicate N ∗/N using the asymp-
totic expression (4.20) in the frame of reference based on the surface
current.
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Figure 4.5: Comparison of action flux: linear shear with variation of kh with θ = 0
and β = 0. Dashed dotted lines indicate F̃/F using the asymptotic
expression (4.23) in the frame of reference based on the depth weighted
current, dashed lines indicate F∗/F using the asymptotic expression
(4.22) in the frame of reference based on the surface current.
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Figure 4.6: Columbia River current profile during ebb tide. The solid line is measured
data (Kilcher & Nash, 2010) and the dashed line is a 6th order polynomial
fit to the data.

with current speed referenced to the surface value Us and with dimensionless an’s.

(Note that a0 = 1 due to the normalization by the surface current velocity, while

a1 = Ωsh/Us ∼ α, where Ωs is the current shear at the surface.) Calculations here are

carried out using N = 6, with the fitted profile for the demonstration case also shown

in Figure 4.6. For the given profile the coefficients in (4.40) are then given by

U(z) = −2.28
(

1 + 8.22
z

h
+ 40.26(

z

h
)2 + 120.52(

z

h
)3

+197.04(
z

h
)4 + 160.36(

z

h
)5 + 50.85(

z

h
)6
)

(4.41)

In the absence of an analytic solution, a numerical method is used to solve

the Rayleigh equation. In BKD17 the procedure used by Dong & Kirby (2012) was

considered to solve the boundary value problem. The vertical velocity w(z) was found

by solving a Riccati equation using a shooting method due to Fenton (1973), also

discussed in KC89. Here, we use the Direct Integration Method (DIM) presented by Li

& Ellingsen (2019) which is faster and easier to parallelize than the shooting method.
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The method starts by rewriting (4.4a) - (4.4c) with the substitution (4.7) as

(f,zz − k2f) =
σ,zz(z)

k ·∆U− kcrs
f ; −h ≤ z ≤ 0 (4.42a)

c2
rs − crsIc(crs)− c0

2 = 0 (4.42b)

where crs is the relative wave phase speed at the surface and

Ic(crs) =
k ·U,z(0) tanh kh

k2

+crs

∫ 0

−h

k ·U,z(z)f(z) sinh k(z + h)

k(k ·∆U− kcrs) cosh kh
dz (4.43a)

c0
2 =

g

k
tanh kh (4.43b)

f(z) = w(z)/w(0) (4.43c)

∆U = U(z)−Us (4.43d)

The DIM method treats equations (4.42a) and (4.42b) as two coupled equations with

f and crs as the unknowns, and then obtains the numerical solution to the set of

equations. The results are used in (4.8a) and (4.8b) to obtain numerical values for

wave action density and flux, which are taken to be the reference ”exact” solutions.

The accuracy of the first order perturbation approximation of the wave action

density Ñ and wave action flux F̃ relative to the numerical solution obtained from the

DIM is shown in Figure 4.7. The results are plotted against a parameter kz0 instead of

kh where z0 is specifically defined assuming a linear profile down from the surface until

the current falls to zero at depth z0. In this case the z0 would be z0 = Us/U
′
s(0) ∼ 3m.

Similar to the linear shear case, the results show improved accuracy in the

estimate of action density compared to the common approaches using depth averaged

or surface current values, displayed as Figures C17 - C20 in the Supplement.

4.6 Taylor series expansion of Ñ (k) and F̃(k) about kp.

The use of the first order correction to the group velocity Û and the more

simplified procedure of using a single value Û(kp) instead of the frequency dependent
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Figure 4.7: % error in wave action density 100(1−Ñ /N ) (left) and wave action flux
100(1− |F̃ |/|F |) (right): MCR current profile with variation of kz0 and
θ, first order perturbation approximations (4.21) and (4.23).

form has been investigated in BKD17 for the case of co-linear waves and current.

BKD17 suggested an alternate strategy, involving a Taylor series expansion about

the peak frequency, which should significantly extend the range of accuracy of current

information available to the wave model with minimal additional data transfer between

wave and circulation models. Writing the components of the effective advection velocity

as Û = (Ûi, Ûj), the Taylor expansion in component form is given by

ÛT i(k) = Ûi(k
p) + (k− kp) · ∂Ûi

∂k

∣∣
kp

+O(|k− kp|2) (4.44)

where subscript T denotes the value obtained from the truncated series. Using the

relation between Û and Ũ gives

∂Ûi
∂k

=
∂Ũi
∂k

+
∂

∂k
(
ki
k

k·∂Ũ

∂k
)

= k̂
∂Ũi
∂k

+
ki
k

(
∂Ũ

∂k

)
+ k̂

[
ki
k

(k · ∂
2Ũ

∂k2
)

]
(4.45)
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The Taylor series expansion in component form is then given by

ÛT i(k) = Ũi(k
p) +

kpi
k

(k · ∂Ũ

∂k
)
∣∣∣
kp

+
kp

k
·(k− kp)

∂Ũi
∂k

∣∣
kp

+
kpi
k

(k− kp) · ∂Ũ

∂k

∣∣∣
kp

+
kpi
k

kp

k
· (k− kp)

(
kp·∂

2Ũ

∂k2

∣∣∣
kp

)
(4.46)

The same approach is used to calculate the intrinsic frequency relative to the

value at the peak wave number as

σ̃T (k) = ω − k · Ũ
∣∣∣
kp
− kp

k
· (k− kp)(k · Ũ,k

∣∣∣
kp

) (4.47)

where we take advantage of the fact that the local value of ω is known for each frequency

component.

Returning to the case of a current with constant shear, we show results for

the accuracy of the action density ÑT for three peak wave numbers corresponding

to kph = 1, 2 and 3 in Figures 4.8-4.10, with the peak direction θp = 0, the current

non-rotational over depth (β = 0) and a range of directions of ±π/3. Figures C21 -

C23 in the Supplement compare the action flux approximation F̃p for the same cases.

Corresponding results for action density Ñ for the MCR current profile are provided in

Figure 4.11 for kph = 1 , 2 and the directional spreading of π/5, while the comparison

for the action flux F̃T is shown in Figures C24 and C25 in the Supplement.

Overall, it is seen that the Taylor series approach provides a robust estimate

for action density and action flux, using only information about the depth-weighted

current velocity at the spectral peak frequency. These expressions should be relatively

simple to implement in spectral wave models, but implementation would require the

calculation of Ũ(kp), Ũ,k(kp) and Ũ,kk(kp) in the circulation model using the 3D

velocity field available there, and the passage of the three vector quantities at each

grid point, rather than the passage of as single current velocity vector as presently
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Figure 4.8: % error 100(1− ÑT/N ) in wave action density ÑT for the Taylor series
expansion about the peak wavenumber kp with k∗ = k/kp: Constant
shear current, kph = 1, β = 0.

implemented.

4.7 Discussion and Conclusions

4.7.1 Comparison to results of Quinn et al. (2017)

Despite the similarity in approach to developing approximations for action den-

sity and flux in this study and that of Quinn et al. (2017), the results are significantly

different, as revealed in a comparison of the two results for the analytic case of a cur-

rent with constant shear. For this case, U′′ = 0 simplifies the result for action density
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Figure 4.9: As in Figure 4.8: Constant shear current, kph = 2, β = 0.
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Figure 4.10: As in Figure 4.8: Constant shear current, kph = 3, β = 0.

Figure 4.11: As in Figure 4.8: MCR current profile, kph = 1 (left) and kph = 2
(right), β = 0.
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(4.2) in Quinn et al.. Their general result for action density is given by

NQ17 =
E0

σs
(1 + ε5R1); R1 = −2I2 sinh kh− 1

c0

(
2

sinh 2kh
I3 + c1

)
(4.48)

we see that I2 = 0 from (4.4). Both terms 2I3(0)/ sinh 2kh, evaluated directly and c1

in the bracketed expression in R1 are equivalent to an expression k̂ · Ũ as used here

For z = 0, it is also apparent that the first term in parentheses is the projection

of the weighted average velocity, k̂ · Ũ, which follows directly from the definition (4.12)

here and the expression for I3 as given in Quinn et al.’s (4.4). The evaluation of c1

from (C.7) is more ambiguous. If I1 is interpreted as usual as the starting point for

the definition of Ũ after two integrations, then c1 also is equal to k̂ · Ũ. This would

then give an expression for N in our notation as

NQ17 =
E0

σs

[
1− 2k · Ũ

σ̃
+O(ε2)

]
(4.49)

On the other hand, if the expression is taken literally for the constant shear case under

development, then c1 evaluates to c1 = k̂ · (Us − (c2
0/2g)U,z(0)), which referring to

(4.38), is again the depth-weighted current for this special case, giving the expression

(4.49) again. It is clear that this expression cannot be correct, as NQ17 would have to

reduce to E0/σs in the limit of a depth-uniform current, where Ũ = Us. We are thus

not able to explain the discrepancies between our results written in terms of surface

values, and the expressions provided by Quinn et al. (2017).

In contrast, the result obtained in the present study can be written as

Ñ =
E0

σs

[
1− k

σ̃
· (Us − Ũ) +O(ε2)

]
(4.50)

Quinn et al. go on to suggest (below their (4.4) ) that using the surface current

in the estimate of action instead of depth-averaged current would be a reasonable no-

cost extension in existing models. This suggestion corresponds to the results for Ns and
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Fs shown in the Supplement, Appendix C. From the results there, it is clear that the

increase in accuracy afforded by using surface current instead of depth average current

is apparent only for relatively short waves, whereas the proper use of the perturbation

solution, or expansions based on that solution, is advantageous at all water depths.

In order to examine the relative predictions of the asymptotic forms (4.20) +

(4.22) vs. (4.21) + (4.23), and to establish a basis for comparing our error estimates

to a case examined by Quinn et al. (2017), we have repeated their analysis of a current

profile given by Wu & Tsanis (1995) and presented in their Section 5 and Figures 1-4.

The current profile is given by

U(z) = Au∗ ln(1 +
z

zs
) +Bu∗ ln(1− z

zb + h
) (4.51)

in which

A =
q2

p1q2 − q1p2

; B = − q1

p1q2 − q1p2

q1 = (1 + zs/h) ln(1 + h/zs)− 1; q2 = zs/h ln(1 + h/zb)− 1

p1 = γzs/h; p2 = γzs/zb (4.52)

where zb and zs are characteristic viscous sublayer thicknesses at the bottom and surface

respectively, and γ is a constant to characterize the intensity of the turbulence. The

origin of the z-coordinate is located at the bottom for this velocity profile and the

direction is upward. A lengthscale δs is taken to be the depth at which the current

velocity falls to zero, and is used as the basis for a relative wavelength parameter kδs

used in plots presented below and by Quinn et al..

Figure 4.12 shows errors for action density Ñ and flux F̃ using the asymptotic

expressions (4.21) and (4.23) with variation of kδs and Froude number Us/c0. The

axis has been modified to be in the same format as Quinn et al. (2017) figure 2 for

comparison, however our Froude number is for a larger range 0 < Us/c0 < 1, while

they have only provided results for 0 < Us/c0 < 0.3. Profile parameters are given
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Figure 4.12: % error in estimates in action density Ñ (left) and group velocity c̃ga
(right), estimates for the case of Wu & Tsanis (1995) profile using the
asymptotic expressions (4.21) and (4.23) in the frame of reference based
on the depth-weighted current Ũ.

by zs = 2.2 × 10−4h, zb = 1.4 × 10−4h, γ = 0.35 and h = 100m. The thickness

of the upper layer is δs = 0.34h in this case. Comparison between the results and

the plots presented in their figure 2(a) and 2(d) demonstrate the accuracy gain in our

approximation. Corresponding plots for our estimates N ∗ and c∗ga = F∗ /N ∗ based on

(4.20) and (4.22) are provided in Figure 4.13, and show a marked decrease in accuracy

compared to the values Ñ and c̃ga = F̃ /Ñ in spite of the demonstrated asymptotic

equivalence of Ñ and N ∗, with errors based on Ñ and F̃ being up to 100 times smaller.

We also note that our estimates for N ∗ and F∗ in the frame of reference based on the

surface current is by far more accurate than the results shown in Quinn et al. (2017).

4.7.2 Conclusions

The results here clearly show that leading order asymptotic expressions for ac-

tion density and flux are both more compact and more accurate numerically when

written in terms of a depth-weighted current Ũ and corresponding intrinsic frequency

σ̃. The asymptotic expressions written in the form of (4.21) and (4.23), repeated here
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Figure 4.13: % error in estimates of action density N ∗ (left) and group velocity c∗ga
(right), estimates for the case of Wu & Tsanis (1995) profile using the
asymptotic expressions (4.20) and (4.22) in the frame of reference based
on the surface current.

as

Ñ =
E0

σ̃
+O(ε2); F̃ = Ñ (Û + c̃gr) +O(ε2) (4.53)

defer the appearance of terms which are not in the standard form for action and

flux to second order in the small parameter ε characterizing the weak shear in the

depth-varying current profile. They provide a relatively more accurate estimate of the

quantities in question than corresponding asymptotic forms (4.21) and (4.23) based on

surface current Us when compared to ”exact” values obtained analytically or numeri-

cally, as shown for the analytic example of a current with constant shear in section 4,

and for the strongly sheared profile of Wu & Tsanis (1995) in section 4.7.1.

We have further extended the suggestion of BKD17 to represent current infor-

mation using a Taylor expansion around the peak wave number in a modeled spectrum,

with extensions covering the specification of action, flux and intrinsic frequency as well

as an extension to a general 2D horizontal setting. These results provide an avenue

for calculating wave action and action flux in spectral wave models, using a compact

set of information about the current field evaluated at the spectral peak wave number.

The coupling would require that the wave model accept the values Ũ, Û and Û,k at
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each grid point, and corresponding changes would need to be made to the specification

of action density and group velocity as a function of frequency and direction within

the wave model formulation. These are not huge changes, and hopefully can be imple-

mented in the near future. The corresponding effects on model source terms, such as

the representation of nonlinear interactions, is still an open area for research.
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Chapter 5

THE COUPLED NHWAVE/SWAN MODEL (NHWAV E)

The wave-current interaction theory for waves propagating on a strongly sheared

current has been presented in Chapter 2. The wave-averaged forces in the mean flow

momentum equation are given in terms of the Craik-Leibovich vortex force formal-

ism. The coupling of a wave-averaged version of the NHWAVE (Ma et al., 2012) non-

hydrostatic circulation model with the SWAN wave model has been recently developed

by Dong (2016) (DK16), including both the vortex force formulation of McWilliams

et al. (2004)(MRL04) and DK16 formulation based on strong currents with arbitrary

shear. In this chapter we will study the application of the wave-current interaction

theory by MRL04 in the circulation model NHWAV E in studying the effect of non-

breaking wave effects on current profiles. We will initially provide an introduction to

the model NHWAV E and follow by presenting the numerical results of a test case of

wave-current interaction in a laboratory flume studied by Kemp & Simons (1982).

5.1 Introduction to NHWAV E

5.1.1 NHWAVE Model

A non-hydrostatic model (NHWAVE) for simulating dispersive free-surface hy-

drodynamics has been developed by Ma (2012). The model solves the incompressible

Reynolds-averaged Navier-Stokes equations in surface and terrain-following form us-

ing a σ-coordinate transformation. A hybrid finite-volume and finite-difference scheme

is adopted to discretize the equations. A different staggered grid framework is in-

troduced, in which the velocity is at the cell center and the pressure is at the cell
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vertical face. Thus the pressure boundary condition at the free surface can be pre-

cisely imposed. A shock-capturing Godunov-type scheme is used to solve the momen-

tum equations. Bottom movement is considered in order to simulate the underwater

landslide-generated tsunamis. The hydrostatic equations are solved by a well-balanced

finite volume method. The fluxes at cell faces are estimated by HLL Riemann ap-

proximation. To obtain the second-order temporal accuracy, the nonlinear Strong

Stability-Preserving (SSP) Runge-Kutta scheme is adopted for adaptive time stepping

Gottlieb et al. (2001). The model is parallelized using the Message Passing Interface

(MPI). The high performance pre-conditioner HYPRE software library is used to solve

the Poisson equation (http://acts.nersc.gov/hypre/).

5.1.1.1 Governing equations

Here we will present the governing equations implemented in the phase averaged

version of NHWAVE. In chapter 2 we separated the mean current and wave motions

by defining the mean current variables with an overline and the wave part with tilde.

The governing equations in this section correspond to the mean flow motions and we

have omitted the overline for simplicity. All values hence correspond to the mean flow

characteristics.

The σ coordinate (x, y, σ,t) is introduced in vertical direction. The relation

between z coordinate and σ coordinates is linear.

σ =
z∗ + h

d
(5.1)

where d is defined as the total water depth as:

d = η + h (5.2)

with η being the mean water surface elevation including wave setup/setdown. σ ranges

from 0 at the bottom (z = −h) to 1 at the surface (z = η̄). Now any variable f ∗
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in the Cartesian coordinates can be transformed to the corresponding variable f in

σ-coordinates.

f ∗(x∗, y∗, z∗, t∗) = f(x, y, σ, t) (5.3)

The vertical coordinate σ can be treated as a variable in Cartesian coordinates.

σ = σ(x∗, y∗, z∗, t∗) (5.4)

Since there is no change in the horizontal and temporal coordinates in the transfor-

mation, let x = x∗,y = y∗,t = t∗. Considering the transition between derivatives of

σ(x∗, y∗, z∗, t∗) and z∗(x, y, σ, t), the derivatives of variable f in Cartesian coordinates

now become

∂f ∗

∂t∗
=

∂f

∂t
+
∂f

∂σ
(
1

d

∂h

∂t
− σ

d

∂d

∂t
) (5.5)

∂f ∗

∂x∗
=

∂f

∂x
+
∂f

∂σ
(
1

d

∂h

∂x
− σ

d

∂d

∂x
) (5.6)

∂f ∗

∂y∗
=

∂f

∂y
+
∂f

∂σ
(
1

d

∂h

∂y
− σ

d

∂d

∂y
) (5.7)

∂f ∗

∂z∗
=

∂f

∂σ

1

d
(5.8)

We define the vertical velocity ω in σ-coordinates.

ω = d
dσ

dt∗
= d(

∂σ

∂t∗
+ u

∂σ

∂x∗
+ v

∂σ

∂y∗
+ w

∂σ

∂z∗
) (5.9)

ω is related to the vertical velocity w in Cartesian coordinates.

ω = w − ∂z∗

∂t
− u∂z

∗

∂x
− v∂z

∗

∂y
(5.10)

The continuity equation in σ-coordinates is expressed as

∂d

∂t
+
∂du

∂x
+
∂dv

∂y
+
∂ω

∂σ
= 0 (5.11)
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The depth-integral of the continuity equation yields

∂d

∂t
+

∂

∂x
(d

∫ 1

0

udσ) +
∂

∂y
(d

∫ 1

0

vdσ) = 0 (5.12)

We separate the pressure terms into hydrostatic and non-hydrostatic pressure

p = q + ρg(η − z∗) + P (5.13)

where P is the wave induced surface pressure as defined in equation 5.26. This term

is added to the Bernoulli head which will result in a modified Bernoulli head (κ̂) as

defined in equation 5.25 and a modified boundary condition for the dynamic pressure

at the surface

q(η) = 0 (5.14)

Finally, we obtain the momentum equations after adding the Reynolds stress

terms and wave averaged forces in both x and y directions as

∂du

∂t
+

∂

∂x
(duu+

1

2
gd2) +

∂duv

∂y
+
∂uω

∂σ
= gd

∂h

∂x
− d

ρ
(
∂q

∂x
+
∂q

∂σ

∂σ

∂x∗
) + dSτx

− d(
∂κ

∂x
+
∂κ

∂σ

∂σ

∂x∗
) + dJx (5.15)

∂dv

∂t
+
∂dvu

∂x
+

∂

∂y
(dvv +

1

2
gd2) +

∂vω

∂σ
= gd

∂h

∂y
− d

ρ
(
∂q

∂y
+
∂q

∂σ

∂σ

∂y∗
) + dSτy

− d(
∂κ

∂y
+
∂κ

∂σ

∂σ

∂y∗
) + dJy (5.16)

The σ-direction momentum equation

∂dw

∂t
+
∂dwu

∂x
+
∂dwv

∂y
+
∂wω

∂σ
= −1

ρ

∂q

∂σ
+ dSτz

− d
∂κ

∂σ
+ dK (5.17)
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The wave-averaged surface boundary condition is given by

w|η =
∂η

∂t
+ u|η

∂η

∂x
+ v|η

∂η

∂y
+∇h·Ust (5.18)

The divergence of the depth-integrated Stokes drift ∇H ·Ust appears on the RHS

of the kinematic surface boundary condition as a wave-induced mass source/sink term

Hasselmann (1971). The Stokes drift expressions are defined as

ust =
a2σwk

2 sinh2 kd
cosh 2k(z + h) (5.19)

Ust(z) =
a2σwk

4k sinh2 kh
sinh 2kd =

E

ρc

k

k
=
N

ρ
k (5.20)

wst(z) = −∇H ·
∫ z

−h
ustdz′ (5.21)

where a is the wave amplitude; k is its wave number vector and k is its magnitude and

σw is the intrinsic frequency (not to be confused with the σ coordinate in NHWAVE).

These wave characteristics are provided either through the passage of data for the peak

frequency from the wave model SWAN or as an input to NHWAVE without the need

to run the wave model for monochromatic waves.

The wave vortex force (J, K)and Bernoulli head κ from MRL04 presented in

Chpater 4 are re-written in σ-coordinates as:

Jx = vstχ− wst

d

∂u

∂σ
(5.22)

Jy = −ustχ− wst

d

∂v

∂σ
(5.23)

K =
ust

d

∂u

∂σ
+
vst

d

∂v

∂σ
(5.24)

κ̂ =
σw

2a2

4

cosh 2kdσ

sinh2 kd
+

σwa
2

4k sinh2 kd
[−(

kx
d

∂u

∂σ
|−h +

ky
d

∂v

∂σ
|−h) sinh 2kdσ (5.25)

+2k

∫ σ

0

∂(k · u)

∂σ′
cosh 2kd(σ − σ′)dσ′] +

1

ρ
P
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P is the wave induces surface pressure defined as:

P = −ρσw
2a2

2
− ρgka

2 tanh kd

σw

( 2k

sinh 2kd

∫ 1

0

(k·u) cosh 2k(d(σ − 1))dz

−[(k·u)|η + (k·u)|−h]
)

(5.26)

The 3D momentum equations in NHWAVE are

∂U

∂t
+

∂F

∂x
+
∂G

∂y
+
∂H

∂σ
= Sh + Sp + S(1)

w + S(2)
w + Sτ (5.27)

U = (du, dv, dw)T (5.28)

F = (duu+
1

2
gd2, duv, duw)T (5.29)

G = (dvu, dvv +
1

2
gd2, dvw)T (5.30)

H = (ωu, ωv, ωw)T (5.31)

Sh = (gd
∂h

∂x
, gd

∂h

∂y
, 0)T (5.32)

Sp = (−d
ρ

(
∂q

∂x
+
∂q

∂σ

∂σ

∂x∗
),−d

ρ
(
∂q

∂y
+
∂q

∂σ

∂σ

∂y∗
),−1

ρ

∂q

∂σ
)T (5.33)

S(1)
w = (−d(

∂κ̂

∂x
+
∂κ̂

∂σ

∂σ

∂x∗
),−d(

∂κ̂

∂y
+
∂κ̂

∂σ

∂σ

∂y∗
),−∂κ̂

∂σ
)T (5.34)

S(2)
w = (dJx, dJy, dK)T (5.35)

Sτ = (dSτx, dSτy, dSτz)
T (5.36)

Sτx =
∂τxx
∂x

+
∂τxx
∂σ

∂σ

∂x∗
+
∂τxy
∂y

+
∂τxy
∂σ

∂σ

∂y∗
+
∂τxz
∂σ

∂σ

∂z∗
(5.37)

Sτy =
∂τyx
∂x

+
∂τyx
∂σ

∂σ

∂x∗
+
∂τyy
∂y

+
∂τyy
∂σ

∂σ

∂y∗
+
∂τyz
∂σ

∂σ

∂z∗
(5.38)

Sτz =
∂τzx
∂x

+
∂τzx
∂σ

∂σ

∂x∗
+
∂τzy
∂y

+
∂τzy
∂σ

∂σ

∂y∗
+
∂τzz
∂σ

∂σ

∂z∗
(5.39)
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where τij with (i, j) = x, y, z is the turbulence stress defined as

τxx = 2νt(
∂u

∂x
+
∂u

∂σ

∂σ

∂x∗
) (5.40)

τyy = 2νt(
∂v

∂y
+
∂v

∂σ

∂σ

∂y∗
) (5.41)

τzz = 2νt(
∂w

∂σ

∂σ

∂z∗
) (5.42)

τxy = τyx = νt(
∂u

∂y
+
∂u

∂σ

∂σ

∂y∗
+
∂v

∂x
+
∂v

∂σ

∂σ

∂x∗
) (5.43)

τxz = τzx = νt(
∂u

∂σ

∂σ

∂z∗
+
∂w

∂x
+
∂w

∂σ

∂σ

∂x∗
) (5.44)

τyz = τzy = νt(
∂v

∂σ

∂σ

∂z∗
+
∂w

∂y
+
∂w

∂σ

∂σ

∂y∗
) (5.45)

νt is turbulent viscosity which has to be defined by the turbulence closure

method of choice in NHWAVE. S
(1)
w is wave-induced Bernoulli head gradient. S

(2)
w

is wave vortex force. Sp accounts for mean flow and long wave dynamic pressure.

These forces are the conservative wave forcing terms. In case of breaking waves, non-

conservative wave forces should be added to the equations. Since our study is focused

on non-breaking waves we have not included these forces in the above equations. They

can easily be added as discussed in Chapter 5 of DK16.

5.1.1.2 Boundary Conditions

In NHWAVE, boundary conditions are required to solve the governing equations.

At the free surface, the continuity of normal and tangential stresses are enforced.

Without wind stress, the tangential stress equals zero. If we assume that the mean

water surface is never steep or wavy and neglect ∂σ/∂x∗ and ∂σ/∂y∗ terms in higher

order derivatives Derakhti et al. (2016), the surface boundary condition can be written

as
∂u

∂σ
|z=η =

∂v

∂σ
|z=η = 0 (5.46)
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At the bottom, the tangential stress and normal velocity are prescribed. The normal

velocity w includes the change rate of bottom with time to generate landslide.

w|z=−h = −∂h
∂t
− u∂h

∂x
− v∂h

∂y
(5.47)

For the horizontal velocities, either free-slip boundary conditions

∂u

∂σ
|z=−h =

∂v

∂σ
|z=−h = 0 (5.48)

or bottom shear stresses are considered

τbot
ρ

= νt
1

D

∂u

∂σ
|z=−h = cd|ub|ub (5.49)

where cd is the bottom drag coefficient and ub is near bed current velocity. In the

presence of waves, the wave motions enhance the bottom stress τbot (Soulsby, 1995). νt

is determined by τbot.

τbot = τc[1.0 + 1.2(
|τw|

|τw|+ |τc|
)3.2] (5.50)

τc = ρ[
κ

ln (zm/z0)
]2|u|u (5.51)

|τw| =
1

2
ρfw|ũorb|2 (5.52)

where τc and τw are bottom stresses due to current and waves, respectively. κ is the

von Karman constant; z0 is the bed roughness; zm is a reference depth above the bed,

nominally equivalent to a half bottom-most grid cell height; fw = 1.39(σwz0/|ũorb|)0.52

is the wave friction factor given by Soulsby (1995). |ũorb| = σwa/(sinh kd) is the bottom

wave orbital velocity.

The Neumann boundary condition is used for getting the dynamic pressure,
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which is directly obtained from the vertical momentum equation.

∂q

∂σ
|z=−h = −ρddw

dt
|z=−h (5.53)

where w is given by the bottom boundary condition.

5.1.1.3 Turbulence Model

An appropriate turbulence model is needed. The Smagorinsky subgrid and k−ε

models are commonly used turbulence models,depending on the grid resolution. Having

relatively larger grid sizes, in this study, the nonlinear k−ε model is applied to simulate

the turbulence generated by sheared current. The equations are given by

∂dktur

∂t
+∇·(dumktur) = ∇·[d(ν +

νt
σk

)∇ktur] + d(Ps + Pb − εtur) (5.54)

∂dεtur

∂t
+∇·(dumεtur) = ∇·[d(ν +

νt
σε

)∇εtur]

+
εtur

ktur
d(C1εPs + C3εPb − C2εε

tur) (5.55)

where um is the mixture fluid phase velocity considering both liquid and bubble. ktur

is turbulent kinetic energy, εtur is turbulent dissipation rate, σk = 1.0, σε = 1.3, C1ε =

1.44, C2ε = 1.92, C3ε = −1.4 are empirical coefficients (Rodi, 1980). Ps is the shear

production and Pb is the buoyancy production, which are described as

Ps = −u′iu′j
∂ui
∂x∗j

(5.56)

Pb = − 1

ρ0

gνt
∂ρm
∂z

(5.57)

where the Reynolds stress u′iu
′
j is calculated by a nonlinear model proposed by Lin

& Liu (1998). ρ0 is the reference density of the incompressible liquid, and ρm is the

mixture fluid phase density. In case of friction in the boundaries the kinetic energy is
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imposed. The pertinent value is obtained by applying local equilibrium between pro-

duction and dissipation of kinetic energy. This leads to Dirichlet boundary conditions

ktur|b =
u∗

2

√
cµ

, εtur|b =
u∗

3

κzb
(5.58)

where κ is the Von Karman constant, zb is the distance from the bed, and u∗ is the

friction velocity defined as the square root of bottom stress τbot/ρ (5.49).

5.1.2 Wave model SWAN

The calculation of the wave-averaged driving forces in the momentum equations

requires wave properties such as wave height, wave direction, wave length and wave

energy dissipation. Wave period and bottom orbital velocity are needed for wave-

averaged bottom stress. In the coupled numerical model, these variables can be either

obtained from the third-generation numerical wave model SWAN (Simulating Waves

Nearshore) (Booij et al., 1999) for spectral waves or as an input for monochromatic

waves. The SWAN model governing equation is the wave action conservation equation

for each discrete spectral component, which accounts for wave refraction by bathymetry

and ambient currents. The model is driven by local winds and boundary data. Physical

processes such as wind generation, white-capping, bottom dissipation and quadruplet

wave-wave interactions are explicitly represented. Depth-induced wave breaking and

triad wave-wave interactions are also included. The numerical propagation scheme is

implicit. In SWAN, wave propagation is described using the two-dimensional wave

action density spectrum N(σw, θ), where σw is wave intrinsic (relative) frequency and

θ is wave direction. The reason to use the wave action as the computing property

is because wave energy density is no longer conserved in the presence of the slowly

varying ambient current Bretherton & Garrett (1968). Therefore the evolution of wave

action spectrum is described in the Cartesian coordinates Hasselmann (1973).

∂N

∂t
+

∂

∂x
(cxN) +

∂

∂y
(cyN) +

∂

∂σw
(cσN) +

∂

∂θ
(cθN) =

S

σw
(5.59)
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The first term on the LHS is the local changing rate of wave action density with

time. The second and the third term account for the wave action density propagation

in horizontal space. The fourth term stands for the shifting of the intrinsic frequency

due to the variations in bathymetry and ambient currents. The fifth term represents

wave refraction induced by varying bathymetry and currents. Both the wave action

density and the propagation speeds in SWAN are based on linear wave theory. The

term S on the RHS contains all the source terms such as wind-generation, dissipation

and nonlinear wave-wave interactions. The introduction to each source term included

in SWAN is given by Booij et al. (1999).

5.2 Interaction of currents with non-breaking waves

The correct modelling of interaction of waves and currents is of great importance

for a good prediction of the vertical structure of the mean flow field. Horizontal and

vertical velocities, as well as shear stresses, depend strongly on the interactions of waves

and currents. The vertical profiles of these variables are modified, and the changes can

effect bed friction, vertical mixing and horizontal dispersion/transport of dissolved or

suspended mass in coastal seas.

Experiments designed to evaluate these modifications have shown that the near-

surface velocity of an otherwise uniform current is reduced by following waves and

increased by opposing waves. Kemp & Simons (1982, 1983) carried out laboratory

experiments in a flume with rough and smooth beds, and with waves on following

and opposing currents. They observed that when waves were following the current,

the mean horizontal velocity reached a maximum value at a level between the bottom

boundary layer and the wave trough. On the other hand, when waves were opposing the

current, the mean horizontal velocity reached a maximum at the free surface which is

higher than the value observed with the logarithmic profile for a current-only case. The

reader is also referred to the references therein for a discussion of previous experiments.

Similar results were obtained by Klopman (1994) in a series of experiments in a wave

flume with a rough bed. His measurements included both the mean horizontal velocity
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Current
velocity

Wave orbital
velocity

Figure 5.1: Definition sketch of wave propagation over underlying current of arbitrary
profile

and the horizontal-velocity amplitude for regular and irregular waves with (i) waves

opposing currents, (ii) waves following currents, (iii) only waves, and (iv) only currents.

In the case of only currents, more detailed observations were made, including shear and

normal stresses. The observed velocity shear is in agreement with the conclusions of

Kemp & Simons (1982, 1983).

Experimentally, this decrease of the near surface velocity is opposite to the

increase of velocity due to breaking waves, propagating with the current. Hence, in a

three dimensional flow model the effect of breaking and non breaking waves can not

be modelled with the same mathematical formulation. For the change of near surface

velocity due to non-breaking waves in a laboratory flume, an explanation is needed.

Major studies have analyzed the interaction of waves and currents by analytical

and numerical models. Analytical approaches consider a 1D wave-current interaction

problem in which the vertical structure of the combined flow is solved relying on the

concept of a simple vertical turbulence structure. The work of Grant & Madsen (1979)

follows this approach, stating that the influence of waves on steady currents above the

wave boundary layer can be parametrized by an apparent increase in the roughness

experienced by the current. Additional examples of simplified wave boundary models

include Christoffersen & Jonsson 1985; You 1996; Nielsen & You 1997; Huang & Mei

2003; Yang et al. 2006. Numerical simulations accommodate more sophisticated models
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of the primitive equations. Dingemans et al. (1996) attributed the wave-induced change

of the Eulerian mean velocity to Langmuir circulation induced by the lateral boundaries

of the wave tank. The results of their three-dimensional computations based on a k− ε

model agree reasonably well with the measurement of Klopman (1994) only for waves

following, but not opposing currents. Allowing the current to be as strong as the phase

velocity of waves, Groeneweg & Klopman (1998) treated the two-dimensional problem

by combining the method of generalized Lagrangian mean (GLM) and a numerical

turbulence model. By an empirical estimate of the eddy viscosity and numerical com-

putations, they found good agreement between the computed and measured profiles of

the longitudinal velocity for both flowing and opposing currents of Klopman (1994).

Since the original experiment of Klopman (1994) only provided measurements in the

center-line of the flume and not in the whole cross section, Klopman conducted addi-

tional tests in the same wave-current flume of the 1994 experiment in 1997 in order

to determine the occurrence and strength of the secondary flow under waves following

and opposing the current. Both results for waves following and opposing the current

were in good agreement with the predictions form CL vortex force theory. According

to the CL vortex force mechanism two counter-rotating secondary circulation cells are

generated, anti symmetric with regard to the vertical center plane along the flume

axis. For waves following the current the water flows upward near the side walls, to the

center at the free surface and is down-welling at the center of the flume. The opposite

occurs for waves opposing the current.

Groeneweg & Battjes (2003) further extended the method presented by Groe-

neweg & Klopman (1998) to study the sidewall effects in the three-dimensional motion

in a long flume of finite width. Transverse circulation due to the presence of the ver-

tical sidewalls was calculated. The 2DV model with vortex forces being implemented

following Dingemans et al. (1996) are compared to their 2DV GLM based model. They

conclude that the comparison proves that secondary circulation cannot be ruled out

in laboratory experiments such as Kemp & Simons (1982) However the CL theory is
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insufficient to predict the observed velocity profile changes. They provide an expla-

nation for the wave induced changes in the mean velocity profile due to the interplay

between the wave-induced shear stress and the Stokes correction of the shear stress,

both acting in longitudinal direction. They state that these effects are dominant over

the transport of longitudinal momentum by the secondary circulations.

Recently interactions between waves and currents was studied by Huang & Mei

(2003), where the eddy viscosity was provided using an algebraic turbulence model

from the flow variables. However their approach is not simple to apply. Olabarrieta

et al. (2010) developed a 2DV non hydrostatic model in order to analyze the problem.

The governing equations are solved in the classical Eulerian reference frame, but using

a σ coordinate system, allowing the variation of free surface elevation. The model can

simulate currents propagating at different angles with respect to the wave propagation

direction. The numerical solution is able to take into account nonlinear terms without

assuming small values of the wave steepness. However, some approximation has to be

introduced in any case (e.g. nonlinear effects in the vertical component of momentum

equations are neglected), and the numerical solution implies high computational costs

which, in this case too, make it quite hard to consider arbitrary angles between the

direction of the current and that of wave propagation. More recently Tambroni et al.

(2015) propose an approach which provides the flow field generated by the interaction

of waves and currents in the entire water column, avoiding the decomposition of the

fluid domain into inviscid core region and viscous boundary layers. Their analysis can

easily be modified to be added to other turbulence models.

In the next section considering a coastal region of constant water depth h,

characterized by the presence of surface gravity waves of frequency ω, which propagates

in positive x direction (Figure 5.1), we will validate our 3D wave-current coupled model

with the inclusion of the wave averaged vortex force, with laboratory experiments. At

this stage it is of importance to identify the dimensionless variables of the problem.

The quantities wave length k and wave period T are used as spatial and temporal

scales, respectively. Moreover the quantity ubw = aω/ sinh kh is used as velocity scale
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Parameter WCA5
Wave height H (m) 0.0444
Wave Length (m) 1.433
Mean centerline velocity for current alone (m/s) 0.183
Reynolds number Rew 2026
Bottom Roughness (mm) 0.05

Table 5.1: Parameters of (Kemp & Simons, 1982) for wave-following current.

where a denotes the amplitude of waves. Current strength will be measured by the

Froude number Fr = Us/c where Us is the current velocity at the surface and c is the

phase speed of the waves.We will compare the results of our 3D coupled model to a

test case provided from data observed by Kemp & Simons (1982) for waves following

currents. This test will represent the interaction of a regular wave with a weak current

and weak shear Fr � 1 and therefore the vortex force formulation of MRL04 will be

a reasonable model to use.

5.3 Model setup and validation

Kemp & Simons have reported the current profiles for wave-following currents

over smooth (WCA1-WCA5) and rough (WCR1-WCR5) beds, in a small wave tank

of 14.5m length, 0.457m width and 0.69m height. The still water depth was 0.2m.

Along the centerline, the depth-averaged mean current velocity was 0.185m/s. Waves

with period T = 1 s were added to the turbulent current. The wave amplitudes a

ranged from 0.011 to 0.023m for the wave-following current of Kemp & Simons (1982).

All full-depth profiles of currents were measured on top of a strip at a station 8.07m

away from the wave maker. For a steady current, the bottom roughness zB is usually

determined by fitting the logarithmic profile with the measured profile of the pure

current. Based on experiments Mathisen & Madsen (1996) have shown that the same

value can be taken if waves are also present. For the purpose of our model validation

we chose one wave-following current with a smooth bed and one case of on opposing

current over the rough bed. The experimental parameters are summarized in table 5.1.
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5.3.1 Current only

To setup the model we first need to apply the proper initial and boundary

conditions to run the model with currents and after a steady logarithmic velocity profile

is established we will add the wave forcing to the current. At inflow, the velocity is

given as an input. At outflow we imposed the same outflow flux as the inflow flux.

In order to study if the wave effects on the current are a 2D or 3D effect, we have

generated two runs for a 2D and 3D case by applying free slip and no slip boundaries

in y direction. Using 550 grid cells in x. For the 2D case we have 5 grid points in y

direction and for the 3D case we have 45 grid points in y. In both cases there are 20

vertical layers . The cell size is dx = 0.04m and dy = 0.01m. Based on the constant

depth of 0.20m throughout the test the vertical resolution would be 0.01m.

Another important step in the model setup is the built-in turbulence closure

model. We here choose a k− ε model bearing in mind that the use of this model needs

adequate simulation time and space to make sure the turbulence model fully develops.

For the situation of current alone (no waves) the computed vertically averaged

horizontal velocity, evaluated at the center line was taken as reference for the vertically

averaged velocity as resulting from the measurements, likewise taken in the center of

the flume. This approach will give the required input flux for modeling and has been

applied to all measurements.

Figure 5.2 (a) and (b) illustrate the mid-section velocities and surface velocity

in the flume at time 300 s for 3D run where the current profile is fully developed

before waves are added. Figure 5.2 (c) shows the vertical profile of the horizontal

velocity for 2D and 3D model along with the calculated logarthmic profile given u∗

and bottom roughness zB. It can be seen that the two cases are in good agreement with

the measurements from the experiment.The quantities wave length k and wave orbital

amplitude ubw = aω/ sinh kh are used as length and velocity scale where a denotes the

amplitude of waves. Figure 5.2 (d) shows the vertical profile of eddy viscosities from

the k − ε model non-dimensionalized by the molecluar viscosity ν = 1e−6, in the 2D

and 3D simulations and the eddy viscisty based on the Prandlt mixing length theory
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Figure 5.2: Kemp & Simons (1982) (WCA5)- Current only simulation: (a) 3D model;
horizontal velocity in mid-section of the flume (b) 3D model; surface
velocity in the flume (c) Vertical structure of the horizontal velocity in
the comparison section illustrated in upper panels with dashed line. (d)
Vertical structure of eddy viscosity in comparison section
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(νml), given by the following expression:

νml = lm
2 (
∂u

∂z
) (5.60)

where lm represents the mixing length. Following Bakker & Van Doorn (1978) and

Kim et al. (2001), the length scale is assumed to increase with the distance from the

bed. Nezu & Rodi (1986), based on experimental measurements made with stationary

currents, concluded that the length scale tends to zero near the water surface. Thus,

a reduction factor for the length scale is included to take into account this tendency.

The equation that includes this linear increase of the mixing length and its reduction

near the free surface is given by the following expression:

lm = κz

√
1− z

h+ η
(5.61)

where κ is the von Karman constant (= 0.4), η the sea surface elevation and h is the

mean water depth.

5.3.2 Wave and currents

The wave parameters such as significant wave height and wave period are pro-

vided as input to NHWAVE without activating SWAN. Adding waves to the estab-

lished current needs some caution considering the experiment conditions. In Kemp &

Simons’s experiment there is no wave current interaction in the inflow boundary, as

they have designed their flume to have a wave paddle with a distance from the inflow

valve. To simulate the same condition in our model we have added a tangent hyper-

bolic function for the wave height that has the value of zero at the inflow boundary

and gradually increases to the actual wave height in the test case. After the turbulent

logarithmic shear flow was developed sufficiently the wave forcings are taken into ac-

count and 120 seconds after a new steady state is obtained.Since the wave vortex force

also acts on the vertical velocity it is important to also run simulations based on the

same numerical and physical parameters but with a non-hydrostatic pressure.
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Comparing the 2D and 3D hydrosttaic and non-hydrostatic model results with

experimental data are shown in fig 5.3 for 3 different distances from the center line,

where Ly is the total width of the flume and y = 0 corresponds to the center line.

Figure 5.3 shows that the effects of waves on currents can not be simulated by a 2D

model. It is also seen that the non-hydrostatic model is shown to give more realistic

results.Further comparison and discussion on the wave forcing and momentum balances

for the hydrostatic and non-hydrostatic case will be discussed in the following sections.

The development of eddies generated in the cross section in the 3D model is

shown shown in Fig 5.4. It is noticeable that neglecting the non-hydrostatic pressure

results in unrealistic eddies where the size of the vertical velocity w, can get as big

as the horizontal velocity u. In the next section we will first discuss the details of

the momentum balances and differences in the hydrostatic and non-hydrostatic case.

We will also explain how these balances in the non-hydrostatic simulation cause the

significant changes in the vertical profile of the horizontal velocity as reported by Kemp

& Simons (1982).

5.3.3 Momentum balances

It was shown in the previous section how the hydrostatic and non-hydrostatic

simulations lead to different results. The magnitude of the eddies shown in figure 5.4

(a) for the hydrostatic case were unreasonably large and an order of magnitude larger

than the eddies shown in figure 5.4 (b) for the non-hydrostatic simulation. Here we will

provide the momentum balances and a discussion on how the hydrostatic case leads

to non satisfactory results. The wave-averaged momentum equations in the Cartesian

coordinates can be written as:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= −∂κ

∂x
+ Jx + Sτ x (5.62)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

1

ρ

∂p

∂y
= −∂κ

∂y
+ Jy + Sτ y (5.63)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = −∂κ

∂z
+K + Sτ z (5.64)
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with p being the sum of hydrostatic and non-hydrostatic pressure as:

p = q + ρg(η − z∗) (5.65)

From the definitions of vortex force in x direction in MRL04 we have:

Jx = −wstu,z + vstχ (5.66)

Jy = −wstv,z − ustχ (5.67)

with

wst = −∇H ·
∫ z

−h
ustdz′ (5.68)

and the current vorticity as

χ = ∇H × u (5.69)

Since the waves are in x direction, the vst is zero. Also there are no changes in the

wave properties in x direction therefore wst can be neglected.

The results are taken at the time when the simulation reaches a steady state

and is fully developed therefore all the derivatives with respect to time are zero. The

nonlinear terms with x derivatives are also negligibly small.

The momentum equations will be simplified to:

v
∂u

∂y
+ w

∂u

∂z
+

1

ρ

∂p

∂x
= Sτ x (5.70)

v
∂v

∂y
+ w

∂v

∂z
+

1

ρ

∂p

∂y
= −∂κ

∂y
+ Jy + Sτ y (5.71)

v
∂w

∂y
+ w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = −∂κ

∂z
+K + Sτ z (5.72)

Hence, the main forcing mechanism is in y and z direction. We will therefore

look at the balances in equation 5.71 and 5.72 as shown in the figures 5.5 and 5.6.

It can be seen that in absence of the dynamic pressure the waves forcing and

shear stress have to balance with the convection terms, which leads to large velocities
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in y and z direction as also seen in figure 5.4. This will also cause unreasonable surface

fluctuations which is evident in figure 5.5 (d), where the term −1
ρ
P,y is equal to −gη,y

in the absence of dynamic pressure. We can thus conclude that due to the dynamics of

this problem and the 3D circulations the hydrostatic assumption does not apply here

and hereinafter we will only discuss the balances in the non-hydrostatic simulation.

In figure 5.7 the momentum balances in the x direction are shown. In the middle

section it is seen that the main balance is between the w∂u/∂z and the shear stress

term. near the wall the balance is between all three terms shown in figure 5.7 and the

pressure gradient term −1
ρ
P,x which is solely due to −gη,x. Figure 5.8 compares the

shear stress and eddy viscosity in the 3D non-hydrostatic and 2D model. In absence of

the side wall effect, the secondary circulations will not be generated and therefore there

will not be a significant vertical velocity w in the mid section. Consequently in the 2D

momentum balance the shear stress balancing the convection terms in the x momentum

balance is smaller compared to the 3D non-hydrostatic model. The structure of the

eddy viscosity is also seen to be significantly different. The eddy viscosity calculated

by the 3D k-epsilon model stays constant in the upper part of the current.

5.3.4 Discussion

Recent studies have analyzed the change in the mean velocity profile interacting

with non-breaking waves in laboratory flumes (e.g. studies by Kemp & Simons (1982,

1983); Klopman (1994)). Their main focus has been explaining the changes in the verti-

cal profile of the velocity due to non-conservative shear stresses. Studies such as Huang

& Mei (2003) and Tambroni et al. (2015) introduce eddy viscosity models to account for

the wave effects on current. In both studies the 2D models have reasonable agreements

with wave opposing currents such as experiments by Kemp & Simons (1983); Klopman

(1994), but lack accuracy for wave following currents such as Kemp & Simons’s 1982

experiment. In this Chapter without interfering with the eddy viscosities we examined

the effect of the conservative wave forces on the current field. For this simulation it

can be seen that using a non-hydrostatic model the conservative wave forces alone can
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generate satisfactory results compared to experiment. The question on whether these

forces could solely explain the changes in the current velocity in a variety of test cases

still needs to be addressed. Son & Lynett (2014) study the effect of turbulence induced

by interactions between waves and currents with arbitrary horizontal vorticity, by in-

troducing new stress in their depth integrated equations. These stresses are functions

of a parameter b that relates the relative importance of wave radiation stress and bot-

tom friction stress to the wavecurrent interaction. Similar analysis could be further

done using our 3D wave forcing to generate similar parameters where the importance

of the conservative vs non-conservative wave effects could be investigated. The case of

waves opposing currents also needs to be addressed. Dingemans et al. (1996) linked the

wave-induced change of the Eulerian mean velocity to Langmuir circulation induced by

the lateral boundaries of the wave tank. The results of their three-dimensional compu-

tations based on a kε model agree reasonably well with the measurement of Klopman

(1994) only for waves following, but not opposing, the current. The question on why

no effect on the current profile was found for their waves opposing current case is yet

not clear, and would be a starting point for future work.
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Figure 5.3: Kemp & Simons (1982) (WCA5)- Waves and Current simulation: Vertical
structure of the normalized horizontal velocity; comparison of the 2D
with 3D hydrostatic and non-hydrostatic simulations in sections (a)y = 0
(b) y = Ly/5 and (c) y = 2Ly/5
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Figure 5.4: Kemp & Simons (1982) (WCA5)- Waves and Current simulation: Nor-
malized velocity feild in the cross section (a) hydrostatic model; (b) non-
hydrostatic model
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Figure 5.5: Kemp & Simons (1982) (WCA5)- Waves and Currents: Forcing terms in
the Y momentum balance (a)-(d): Hydrostatic, (A)-(D): non-hydrostatic
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Figure 5.6: Kemp & Simons (1982) (WCA5)- Waves and Currents: Forcing terms
in the Z momentum balance (a)-(d): Hydrostatic right, (A)-(D): non-
hydrostatic
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Figure 5.7: Kemp & Simons (1982) (WCA5)- Waves and Current- Non- hydrostatic
simulation: momentum balances in X direction in cross section
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Figure 5.8: Kemp & Simons (1982) (WCA5)- Waves and Currents: 3D vs 2D com-
parison; (a) Shear stress Sτ x (b) Vertical structure of eddy viscosity
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Chapter 6

SUMMARY AND FUTURE WORK

6.1 Summary of presented work

The interactions between surface gravity waves and vertically sheared currents

have been discussed in the thesis. The study consists of three parts: (1) general wave-

current interaction theory, (2) effect of sheared currents in wave action conservation

and (3) Numerical study on wave effects on current profiles using the phase averaged

non-hydrostatic model NHWAVE.

In the first part, the framework presented by DK16 to describe the wave-current

interaction for arbitrarily sheared current is discussed. The flow motions are considered

to be the superposition of waves and currents. The wave equations are then separated

from the mean flow equations by applying multiple scale expansion and wave-averaging.

The wave-averaged forces in terms of vortex force formulation are obtained from the

mean flow equations. The reduction of the present vortex force formula for weak cur-

rent assumption is compared with MRL04 results. The leading order wave equation

results in the Rayleigh (or inviscid Orr-Sommerfeld) stability equation. The solvability

condition of the second order wave Raleigh equation leads to the wave action equation

for arbitrary current profile. In DK16 it is shown that the resulting wave action equa-

tion for strongly sheared current reproduces the work done by Voronovich (1976). After

presenting the summary of the theoretical work on wave-current interaction for strongly

sheared mean flows developed by DK16 and further verified in our study, we move to

investigating the shortcomings in numerical modeling of waves and currents. Typical

coastal circulation and wave models, still only employ theoretical formulations which

take depth-uniform mean flows into account, with realistic, non-uniform flows treated
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as being depth uniform through some chosen averaging procedure. Depending on the

choice of average over depth, significant errors may arise in the estimation of properties

such as group velocity and action density in realistic conditions. These errors, in turn,

are fed back into the circulation model through incorrect representation of the vertical

structure of wave forcing. In Chapter 3 we demonstrate that the widely used depth-

weighted average current value KC89, is not the correct current speed to use directly

in the action equation in SWAN or similar wave models, as this approach neglects the

contribution from the derivative of the wavenumber-dependent weighted current dur-

ing calculation if the group velocity. We correct this error and also suggest a strategy

for determining the current contribution to group velocity as a function of frequency,

employing a Taylor series expansion about the peak frequency, significantly extending

the range of accuracy of current information with minimal additional programming or

data passage. We then extend the results to two horizontal dimensions for use in the

SWAN wave model. The expressions for energy density and intrinsic frequency used

to construct the wave action density are similarly investigated, using perturbation ap-

proximations in the general action balance equation of Voronovich (1976). The results

suggest that the action density N = E0/σ may be consistently constructed using the

usual expression for energy density, E0 = 1/2ρga2, together with a σ = ω − kŨ based

on the KC89 current speed. The wave action flux approximation also suggests the use

of the current Û as the correct current speed to be used in the advection velocity which

is the vector form of the advection velocity suggested by KC89 and discussed in chapter

(3). We have further extended the suggested Taylor expansion around the peak wave

number in a modeled spectrum, with extensions covering the specification of action,

flux and intrinsic frequency as well as an extension to a general 2D horizontal setting.

These results provide an avenue for calculating wave action and action flux in spectral

wave models, using a compact set of information about the current field evaluated at

the spectral peak wave number. The final part of this study is focused on the effect

of wave vortex forces presented by MRL04 in wave current interaction in laboratory

flumes. In doing so we have used the coupled NHWAVE-SWAN model (NHWAV E)
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without activating the SWAN model and instead using the second option implemented

in the code to give wave characteristics as an input data to the phase averaged model

NHWAVE. To validate our model we have chosen the experiments done by Kemp &

Simons (1982) on the interaction of non-breaking waves with currents in a laboratory

flume. The results from our 3D non-hydrostatic model agree reasonably well with data

from the experiment. The changes in the vertical profile of the current are successfully

modeled with the wave averaged vortex forces. Further simulations to investigate the

effect of flume width, bottom roughness and wave direction will be considered as future

work.

6.2 Future work

Future work can be listed as bellow:

• Implementation of work done in Chapters (3) and (4) in phase averaged models
such as SWAN:

This has been an ongoing project in collaboration with USGS Woods Hole and
University of Washington to implement the proposed method in Banihashemi
et al. (2017) and Banihashemi & Kirby (2019) in the coupled wave, current, and
sediment-transport model (COAWST).

• Extend the wave-current interaction theory to incorporate spectral wave condi-
tions:

Quantities calculated based on spectral information in SWAN are simply based
on monochromatic theory expressions using the peak frequency and direction.
Guidance on this issue can be obtained from Bennis et al. (2011) where they
assume that in the case of random waves the corresponding forcing is simply
the sum of the monochromatic wave forcing. For example they replace the wave
energy E with is the spectral density of the surface wave elevation variance E(f, θ)
(where f and θ are, respectively, the wave frequency and direction). So if the
Stokes drift velocity is defined as

ust(z) =
Eσk

2 sinh2 kd
cosh 2k(z + h) (6.1)

then for random waves the stokes drift velocity could be defined as

ust(z) =

∫
E(f, θ)σk

2 sinh2 kd
cosh 2k(z + h) dfdθ (6.2)
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• Further investigation on wave conservative vs non-conservative wave effects on
the mean current.

In chapter 5 we studied the interaction of non-breaking waves with currents.
Our non-hydrostatic model results were in good agreement with wave following
currents from the laboratory study of Kemp & Simons (1982). However the effect
of bottom roughness, flume width and the direction of the waves still needs to
be addressed. Further simulations would be required to investigate the effect
of each parameter in generating the secondary circulations and modifying the
vertical profile of the mean current.
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Li, Y. & Ellingsen, S. Å. 2019 A framework for modeling linear surface waves on
shear currents in slowly varying waters. Journal of Geophysical Research: Oceans
124 (4), 2527–2545.

129



Lin, P. & Liu, P. L. F. 1998 Turbulence transport, vorticity dynamics, and solute
mixing under plunging breaking waves in surf zone. Journal of Geophysical Research:
Oceans 103 (C8), 15677–15694.

Longuet-Higgins, M. S. & Stewart, R.W. 1964 Radiation stresses in water
waves; a physical discussion, with applications. Deep Sea Research and Oceano-
graphic Abstracts 11, 529–562.

Longuet-Higgins, M. S. & Stewart, R. W. 1960 Changes in the form of short
gravity waves on long waves and tidal currents. J. Fluid Mech. 8, 565–583.

Longuet-Higgins, M. S. & Stewart, R. W. 1961 The changes in amplitude of
short gravity waves on steady non-uniform currents. J. Fluid Mech. 10 (04), 529–549.

Longuet-Higgins, M. S. & Stewart, R. W. 1962 Radiation stress and mass
transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech. 13 (04),
481–504.

Ma, G. 2012 Multiscale numerical study of turbulent flow and bubble entrainment in
the surf zone. PhD thesis, University of Delaware, Newark DE.

Ma, G., Shi, F. & Kirby, J. T. 2012 Shock-capturing non-hydrostatic model for
fully dispersive surface wave processes. Ocean Modelling 43, 22–35.
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Appendix A

DEPTH-WEIGHTED CURRENT VELOCITIES BASED ON
POLYNOMIAL FORM OF U(Z)

We define the ambient current profile U(z) in polynomial form as

U(z) = Us

N∑
n=0

an(
z

h
)n (A.1)

where the an are defined by fitting to measurements or to grid-based numerical values.

Evaluating Ũ from (3.1) then gives

Ũ =
UsG

h

N∑
n=0

an

∫ 0

−h
(
z

h
)n cosh[2k(h+ z)] dz

=
Us
h

N∑
n=0

an
hn
Jn (A.2)

with Jn given by

Jn = G

∫ 0

−h
zn cosh[2k(h+ z)] dz (A.3)

The first two terms J0 and J1 may be simply evaluated, after which the remaining Jn’s

are defined by a recurrence relation:

J0 = h

J1 = −h
2µ

2
(A.4)

Jn =
n

4k2

[
G(−h)(n−1) + (n− 1)Jn−2

]
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For the polynomial of order N = 6 used in Section 5, Ũ is given by

Ũ = Us

[
a0 −

µ

2
a1 +

(1−G)

2(kh)2
a2 +

3(G− µ)

4(kh)2
a3

+

(
3(1−G)

2(kh)4
− G

(kh)2

)
a4 +

(
15(G− µ)

4(kh)4
+

5G

4(kh)2

)
a5 (A.5)

+

(
45(1−G)

4(kh)6
− 15G

2(kh)4
− 3G

2(kh)2

)
a6

]

The derivative of Ũ w/r k is given by

Ũk =
Us
h

N∑
n=0

an
hn

(Jn)k (A.6)

where subscript k denotes the derivative, and where (Jn)k can be expressed as

(J0)k = 0

(J1)k = −h
2

2
µk (A.7)

(Jn)k =
−2Jn
k

+
n

4k2

[
(−h)n−1Gk + (n− 1)(Jn−2)k

]
with

µk =
µ

k
(G− 1)

Gk =
G

k
(1−G cosh 2kh) (A.8)
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For N = 6, using (A.6) results in

kŨk = Us

[
− k

2
µka1 −

(kGk − 2G+ 2)

2(kh)2
a2 +

3(k(Gk − µk)− 2(G− µ))

4(kh)2
a3

+
−k(2h2k2 + 3)Gk + 4G(h2k2 + 3)− 12)

2(kh)4
a4 (A.9)

+
5(h2k3Gk + 3kGk − 2G(h2k2 + 6)− 3kµk + 12µ)

4(kh)4
a5

+
−k(2h4k4 + 10h2k2 + 15)Gk +G(4h4k4 + 40h2k2 + 90)− 90)

4(kh)6
a6

]
The resulting O(F ) correction to the group velocity is finally given by

Û =
Us
h

N∑
n=1

an
hn

(kJn)k (A.10)

At O(F 2), the expression for C2 is given by (3.10), and can be written as

C2 =
Ũ

2C0

A+
k2C0

2gf 2
0 (0)

B +
2k3C0

gf 2
0 (0)

C (A.11)

where

A = [4kI1(0)− (1 + 2 cosh 2kh)Ũ ]

B =

∫ 0

−h
U2(z)[1 + 2 cosh2 k(h+ z)] dz (A.12)

C =

∫ 0

−h
[I2(z)I

′

1(z)− I1(z)I
′

2(z)] dz

with

I1(z) =

∫ z

−h
U(ξ) sinh 2k(h+ ξ) dξ

I2(z) =

∫ z

−h
U(ξ) cosh 2k(h+ ξ) dξ (A.13)
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We first evaluate the expressions for I1(z) and I2(z). Using the current profile (A.1),

we obtain

I1(z) = Us

N∑
n=0

an
hn

∫ z

−h
ξn sinh 2k(h+ ξ) dz

= Us

N∑
n=0

an
hn
I1,n(z) (A.14)

with

I1,0(z) =
cosh 2k(h+ z)− 1

2k

I1,1(z) =

[
z cosh 2k(h+ z) + h

2k
− sinh[2k(h+ z)]

4k2

]
(A.15)

I1,n(z) =
1

4k2

[
2k (zn cosh 2k(h+ z)− (−h)n)− nzn−1 sinh 2k(h+ z)

+n(n− 1)I1,n−2]

Similarly, I2(z) can be expressed as

I2(z) = Us

N∑
n=0

an
hn

∫ z

−h
ξn cosh 2k(h+ ξ) dz

= Us

N∑
n=0

an
hn
I2,n(z) (A.16)

with

I2,0(z) =
sinh 2k(h+ z)

2k

I2,1(z) =

[
z sinh 2k(h+ z)

2k
− cosh 2k(h+ z)− 1

4k2

]
(A.17)

I2,n(z) =
1

4k2

[
2k (zn sinh 2k(h+ z))− nzn−1 cosh 2k(h+ z)

+n(−h)n−1 + n(n− 1)I2,n−2

]
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The expression A in (A.12) is evaluated using (A.14) and (A.16). Moving to the second

term in (A.12), we have

B =

∫ 0

−h
U2(z)[1 + 2 cosh2 k(h+ z)] dz

=

∫ 0

−h
U2(z)[2 + cosh 2k(h+ z)] dz

= Us
2

N∑
n=0

N∑
m=0

anam
hn+m

∫ 0

−h
zn+m(2 + cosh 2k(h+ z)) dz (A.18)

= Us
2

N∑
n=0

N∑
m=0

anam

[
2h

m+ n+ 1
(−1)n+m+2 +

1

hn+m
I2,n+m(0)

]

The last term in (A.12) is given by

C =

∫ 0

−h
[I2(z)I

′

1(z)− I1(z)I
′

2(z)] dz

I
′

1(z) = U(z) sinh 2k(h+ z) (A.19)

I
′

2(z) = U(z) cosh 2k(h+ z)

and can be written as

C = Us
2

N∑
n=0

N∑
m=0

anam
hn+m

Hn,m (A.20)

with

Hn,m =

∫ 0

−h
zm [I2,n(z) sinh 2k(h+ z)− I1,n(z) cosh 2k(h+ z)] dz (A.21)

For the polynomial form, Hn,m is given by

H0,m =
1

2k

[
(−h)m+1

m+ 1
+ I2,m(0)

]
H1,m =

1

2k

[
(−h)m+2

m+ 2
+ (−h)I2,m(0) +

I1,m(0)

2k

]
(A.22)

Hn,m =
1

2k

[
(−h)n+m+1

n+m+ 1
+ (−h)nI2,m(0) +

n(−h)n−1

2k
I1,m(0) +

n(n− 1)

2k
Hn−2,m

]
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The resulting second order correction to group velocity will be

Cg2 =
∂kC2

∂k
= C2 + k

∂C2

∂k

=C2 + k
[ ∂
∂k

(
Ũ

2C0

)A+
Ũ

2C0

Ak +
∂

∂k
(
k2C0

2gf 2
0 (0)

)B +
k2C0

2gf 2
0 (0)

Bk (A.23)

+
∂

∂k
(

2k3C0

gf 2
0 (0)

)C +
2k3C0

gf 2
0 (0)

Ck

]
We also need an expression for Ũkk to be used in the Taylor series in section 6.

This is given by

Ũkk =
Us
h

N∑
n=0

an
hn

(Jn)kk (A.24)

where (Jn)kk can be expressed as

(J0)kk = 0

(J1)kk = −h
2

2
µkk (A.25)

(Jn)kk =
2Jn
k2

+
−1

2k3

[
n(−h)n−1Gk + n(n− 1)(Jn−2)k

]
−2(Jn)k

k
+

1

4k2

[
n(−h)n−1Gkk + n(n− 1)(Jn−2)kk

]
with

µkk =
µ

k2

[
(G− 1)2 − (G− 1) +G(1−G cosh 2kh)

]
Gkk =

G2

k2
(G+G cosh2 2kh− 2 cosh 2kh) (A.26)
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For N = 6 (A.24) leads to

Ũkk = Us

[µkk
2
a1 −

(k2Gkk − 4kGk + 6G− 6)

2k4h2
a2 (A.27)

+
3(k2Gkk − 4kGk + 6G− k2µkk + 4kµk − 6µ)

4k4h2
a3

−(k2(2h2k2 + 3)Gkk − 4(2k(h2k2 + 3)Gk + 15) + 12G(h2k2 + 5))

2k6h4
a4

+
5(k2(h2k2 + 3)Gkk − 4h2k3Gk − 24kGk + 6G(k)(h2k2 + 10)− 3k2µkk + 24kµk − 60µ)

4k6h4
a5

− 3

4k8h6

(
3(k2(2h4k4 + 10h2k2 + 15)− 2((4h4k5 + 40h2k3 + 90k)Gk + 315)

+2Gk(6h4k4 + 100h2k2 + 315))
)
a6

]
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Appendix B

SCALING AND PERTURBATION SOLUTION FOR THE STRONG
CURRENT, WEAK SHEAR CASE

The theoretical development in KC89 and BKD17 is based on a framework that

assumes that the steady current is small compared to wave phase speed, with current

shear and profile curvature comparably small. Here, we provide a scaling analysis

and perturbation solution that generalizes the problem to the case of a strong depth-

uniform current component and arbitrary current orientation in horizontal coordinates,

but with deviations from depth-uniformity assumed to be weak. Conceptually, the

approach is to write the mean current vector U(z) as U0 + U1(z), where the second

component carries the information about weak shear and rotation over depth. We do

not make an a priori choice of how to make this split into two components, and, as will

be seen below, the solution itself suggests that U1 be chosen so as to have a weighted

depth-average value of 0 when weighted according to the KC89 procedure.

To develop the non-dimensional form of (4.4a) - (4.4c), we introduce the scales

ω0 for frequency or inverse time, k0 for wavenumber or inverse horizontal distance, and

scale vertical coordinate z by uniform depth h. Vertical velocity is scaled by its value

at the free surface (determined by the kinematic boundary condition) as

w(z) = −iσsaf(z) (B.1)

where σs is intrinsic frequency at z = 0, a is surface wave amplitude, and f(z) is a
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dimensionless shape function. Intrinsic frequency σ is given by

σ(z) = ω − k ·U(z) = ω − k ·U0 − k ·U1(z)

= σ0 + σ1(z) (B.2)

We define a reference phase speed c0 = ω0/k0 and use c0 =
√
gh, which fixes the

relationship between ω0 and k0. For the monochromatic case studied here, we identify

ω0 with ω. Finally, we scale strong depth uniform current U0 by U and weak current

U1 by hΩ, where Ω represents the strength of current shear or rotation over depth.

Referring to (4.4a) - (4.4c), we introduce dimensionless parameters σ′ = σ/ω0 and

k′ = k/k0. The resulting dimensionless problem (with primes dropped) is then given

by

σ(z)(f,zz − k2µ2f) = εσ1,zzf ; −1 ≤ z ≤ 0

σ2
sf,z(0) = k2 + εσsσ1,z(0) (B.3)

f(0) = 1; f(−1) = 0

with

σ(z) = σ0 + εσ1(z) = (1− Fk ·U0) + ε(−k ·U1(z)) (B.4)

Dimensionless parameters are µ = k0h = O(1), F = U/c0 = O(1), and ε = µΩ/ω0 �

1, where µ is the usual dispersion parameter resulting from scaling depth by h and

horizontal distance by k−1
0 , F is a Froude number, and ε � 1 is a small parameter

characterizing current shear. (The alternate approach employed by Ellingsen & Li

(2017), where shear is allowed to be strong but curvature weak, would employ the

regime F, ε = O(1), with a new small parameter required to characterize the weak

curvature.)

Following KC89, we next solve the system (B.3) using a regular perturbation
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expansion

f(z) =
N∑
n=0

εnfn(z). (B.5)

with fn(−1) = 0. In contrast to KC89, we take f0(0) = 1 to satisfy the entire sur-

face boundary condition for f , giving homogeneous conditions fn(0) = 0 for n > 0.

Introducing (B.4) and (B.5) in (B.3) and sorting by powers of ε gives the governing

equations and surface boundary conditions

σ0

(
fn,zz − k2µ2fn

)
= Hn(z) (B.6)

σ2
0fn,z(0) = Sn (B.7)

At n = 0, we have H0 = 0, S0 = 1, and we get the solution

f0(z) =
sinhµk(1 + z)

sinhµk
(B.8)

with

σ2
0 =

k tanhµk

µ
(B.9)

which is the usual solution for waves on a depth uniform current. For higher orders

n ≥ 1, use of Green’s law for f0 and fn leads to a solvability condition

∫ 0

−1

f0Hndz = Sn (B.10)

At n = 1, the leading order at which current shear has an effect, we have

H1(z) =
σ1,zz

σ0

f0(z); S1 =
σ1,z(0)

σ0

− 2k2σ1(0)

σ3
0

(B.11)

Using (B.11) in (B.10) leads, after cancellations, to the identity

∫ 0

−1

σ1(z) cosh 2µk(1 + z)dz = −k ·
∫ 0

−1

U1(z) cosh 2µk(1 + z)dz = 0 (B.12)
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But U1 = (U−U0)/ε, which, when substituted in (B.12), gives the result

U0 = Ũ =
2µk

sinh 2µk

∫ 0

−1

U(z) cosh 2µk(1 + z)dz (B.13)

where Ũ is the depth-weighted current from KC89, extended to allow for F = O(1)

and arbitrary direction relative to the wave direction. We thus have the leading order

expression for intrinsic frequency σ0 = σ̃ = 1 − Fk · Ũ, with leading order dispersion

relation

σ̃2 =
k tanhµk

µ
(B.14)

The expression for phase speed ca in a fixed frame is given by

ca =
ω

k
=
σ̃

k
+ Ũ +O(ε2) (B.15)

with no further correction to phase speed at O(ε). Equations (B.6) - (B.7) may then

be solved for f1(z) following the procedure in KC89, giving the result

f1(z) =

[
A1 +

1

µk

∫ z

−1

H1(ξ)f0,ξ(ξ) dξ

]
f0(z)

+

[
B1 −

1

µk

∫ z

−1

H1(ξ)f0(ξ) dξ

]
f0,z(z) (B.16)

with the coefficients A1 and B1 of the homogeneous solution resolved by applying the

boundary conditions f1(0) = f1(−1) = 0. Dimensional forms of the results are given

in Section 4.3.1.
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Appendix C

APPROXIMATIONS FOR WEAK CURRENT SHEAR

Starting with the expressions (4.9a) and (4.9b) for action density and flux, we

develop expansions in powers of ε consistent with the approach in B. In (4.9a) and

(4.9b), explicit appearances of σs and Us occur due to the satisfaction of the surface

boundary condition and the transformation (4.7). We assume these should be common

to all versions of the expansion that follows. Subsequently, we express f(z) as in (B.5)

and use (4.14) and (4.16). We then introduce an arbitrary version of the depth uniform

current and resulting intrinsic frequency, U0 and σ0, as representations of the leading

order solution,

U(z) = U0 + εU1(z)

σ(z) = σ0 + εσ1(z) (C.1)

where σ0 = ω−k·U0 and σ1 = −k·U1 = −k·(U−U0), and with associated dispersion

relation

σ2
0 = gk tanh kh (C.2)

After some simplification of the resulting forms of N and F , we obtain approximate

forms consistent with the present derivation through the choice U0 = Ũ and σ0 = σ̃.

We also develop an alternate version based on the choice U0 = Us and σ0 = σs, which

leads to expressions for action and flux defined in terms of surface variables, as in Quinn

et al. (2017). It was our initial expectation that this procedure should reproduce the

results in Quinn et al. (2017), which are described as being based on the approximate

wave-current formulation here and in KC89, but we have not been able to reproduce

the results given by Quinn et al. (2017), as discussed in Section 4.7.1.
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Substituting the expressions (C.1) and the expansion for f(z) into the formu-

lae (4.9a) and (4.9b) and retaining terms to O(ε) leads to the generic version of the

expansion, where any remaining occurrences of frequency or current are expressed in

terms of σ0 and U0. During this process, expressions occurring in terms of O(ε) may

be manipulated by choosing σ0 = σs or σ̃ freely, since transformations between these

quantities would occur at O(ε2). In contrast, occurrences of σ0 in O(1) terms must

retain the implied ambiguity, as it’s resolution would occur within the accuracy of the

approximation.

Proceeding with (4.9a) for the action density, we note that the integral term is

of O(ε), since σ′′ = εσ′′1 for any choice of reference frame. Recognizing that σs/σ0 =

1 +O(ε) for any choice of reference frame making σ1 small, we obtain the approximate

expression

N =
E0

σs

[
1 + ε

σs
2gk2

(
σ1,z(0)−

∫ 0

−h
σ1,zzf

2
0dz

)]
+O(ε2) (C.3)

The expression in the interior parentheses may be integrated immediately, and we

obtain the approximation

N0 =
E0

σs

[
1 + ε

σs
σ2

0

(σs − σ̃)

]
+O(ε2) (C.4)

where the single appearance of σ0 results from a resolution of the combination gk tanh kh.

Turning to the expression for action flux (4.9b), we note that the first integral

term involving f 2 occurs at leading order, and thus the ambiguity of the value of σ0

must be retained there. We proceed as before by substituting the expansions (C.1).

The expression A(z) may be expanded as A = A0 + εA1 + O(ε2), and we find that

A0 = 0 and

A1(z) = σ0U1,z −U0σ1,z (C.5)
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so that the integral involving A,z is reduced to

σ2
s

∫ 0

−h
σ−2A,zf

2dz = ε
σ2
s

σ2
s +O(ε)

∫ 0

−h
A1,zf

2
0dz +O(ε2) (C.6)

The entire bracketed expression involving A in (4.9b) is then evaluated as

ε

[
−A1(0) +

∫ 0

−h
A1,zf

2
0dz

]
= −ε k

sinh2 kh
I3 (C.7)

where

I3 =

∫ 0

−h
A1(z) sinh 2k(h+ z)dz (C.8)

The integral of f 2 is expanded to give

∫ 0

−h
f 2dz = I4 + 2εI5 +O(ε2) (C.9)

with

I4 =

∫ 0

−h
f 2

0dz; I5 =

∫ 0

−h
f0f1dz (C.10)

and with f1 given by (4.16). The resulting expression for the approximation F0 is then

F0 =
E0

σs

[
Us + crs

(
1− σ2

s

g
I4

)]
− εE0

σs

[
crs

2σ2
s

g
I5 +

σs
σ2

0 sinh 2kh
I3

]
(C.11)

Integrals I3 and I4 are given to the required order by

I3 = sinh 2kh
[
σ0(Us − Ũ) + U0(σ̃ − σs)

]
I4 =

g

2σ2
0

(1−G); G =
2kh

sinh 2kh
(C.12)

The expression for I5 is complex, and is given after some initial effort by

I5 =
1

4σ̃ sinh2 kh

[
G cosh2 kh

k
I2(0)− I6

]
(C.13)
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where (from (4.17) )

I2(0) = 2 sinh2 kh(k̂ ·U,z(0)) + 2 sinh 2kh(σs − σ̃) (C.14)

and

I6 =

∫ 0

−h
k̂ ·U,zz(z)(h+ z) sinh 2k(h+ z)dz (C.15)

An expression for I6 is obtained by first expressing Ũ in terms of U,zz using two inte-

grations by parts, differentiating the resulting expression with respect to wavenumber

k, and taking the dot product with the unit wavenumber k̂ to obtain (after rearrange-

ment)

I6 = sinh 2kh

[
k · Ũ,k + hk̂ ·U1,z(0) +

1

k

(
(1−G) + 2G cosh2 kh

)
(σs − σ̃)

]
(C.16)

Using (C.14) and (C.16) in (C.13) leads to a relatively compact expression for I5 given

by

I5 = − 1

2σ̃ tanh kh

[
k · Ũ,k +

1

k
(1−G)(σs − σ̃)

]
(C.17)

Using the results for I3, I4 and I5 in (C.11) leads finally to

F0 =
E0

σs

[
Us + crs

(
1− 1

2

(
σs
σ0

)2

(1−G)

)]

+ε
E0

σs

[
σ3
s k̂

σ̃σ2
0

(
k · Ũ,k +

1

k
(1−G)(σs − σ̃)

)
−σs
σ2

0

(
σ0(Us − Ũ) + (σ̃ − σs)U0

)]
(C.18)

From this point, the resolution of the expressions for N0 and F0 involves the

choice of σ0. Following the procedure of referencing all quantities to surface conditions

leads to an expression for N0 given by

N ∗ = N0(σs) =
E0

σs

[
1 + ε

(σs − σ̃)

σs

]
+O(ε2) (C.19)
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This result is similar in form to that in Quinn et al. (2017), equation (4.2), but there

is no clear relation between the residual O(ε) terms in the two results, as discussed

further in Section 4.7.1.

Taking the alternate approach of referencing quantities to the frame moving

with speed Ũ leads to the expression

Ñ = N0(σ̃) =
E0

σ̃
+O(ε2) (C.20)

where all information about the approximation within the order of accuracy is con-

tained in the simple ratio of E0 and σ̃.

The same process applied to F0 in (C.18) leads to the expressions

F∗ =
E0

σs

[
Û + cgrs + ε

(
Us

(
σs − σ̃
σs

)
+

k̂

k
(1−G)(σs − σ̃)

)]
+O(ε2) (C.21)

and

F̃ =
E0

σ̃

[
Û + c̃gr

]
+O(ε2) (C.22)

where cgrs and c̃gr are relative group velocities (defined in the usual sense for a depth

uniform current) relative to the surface and depth weighted velocities respectively.
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Appendix D

RESULTS FOR ERRORS IN WAVE ACTION DENSITY FLUX FOR
ADDITIONAL CASES

We first report % errors in estimates of action density N relative to exact

results for a linear shear current, using the depth-weighted current Ũ (Figures D.1 -

D.2), surface current Us (Figures D.3 - D.5) or depth-average velocity U (Figures D.6

- D.8) for oblique angles β = 0, π/4 and π/2 between the surface current and shear

current, for ranges of kh and wave angle θ relative to the surface current. Figures D.9

- D.16 report the % errors in the estimate of action flux F for the same distributions

of parameters.

Figures D.17 - D.20 show results for action density and flux estimates for the

Mouth of the Columbia River example for expressions based on depth uniform current

equal to the surface current or depth-average currents.

Figures D.21 - D.25 show error measures for cases constructed using the Taylor

series expansion of Section 6, with values normalized by exact values for action density

and flux.
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Figure D.1: % error in wave action density 100(1−Ñ /N ): linear shear with variation
of kh-θ, first order perturbation approximation, β = π /4.
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Figure D.2: % error in wave action density 100(1−Ñ /N ): linear shear with variation
of kh and θ, first order perturbation approximation, β = π /2.
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Figure D.3: % error in wave action density Ns based on surface current Us relative
to the exact value, 100(1−Ns/N ) with variation of kh and θ: Constant
shear current, β = 0.
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Figure D.4: As in Figure D.3: Constant shear current, β = π/4.

154



Figure D.5: As in Figure D.3: Constant shear current, β = π/2.
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Figure D.6: % error in wave action density N based on depth-average current U
relative to the exact value, 100(1 − N /N ) with variation of kh and θ:
Constant shear current, β = 0.
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Figure D.7: As in Figure D.6: Constant shear current, β = π/4.
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Figure D.8: As in Figure D.6: Constant shear current, β = π/2.
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Figure D.9: % error in wave action flux 100(1−|F̃ |/|F |): linear shear with variation
of kh and θ, first order perturbation approximation, β = π/4.
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Figure D.10: % error in wave action flux 100(1−|F̃ |/|F |): linear shear with variation
of kh and θ, first order perturbation approximation, β = π/2.
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Figure D.11: % error in wave action flux Fs based on surface current Us relative to
the exact value, 100(1−Fs/F) with variation of kh and θ: Constant
shear current, β = 0.
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Figure D.12: As in Figure D.11: Constant shear current, β = π/4.
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Figure D.13: As in Figure D.11: Constant shear current, β = π/2.
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Figure D.14: % error in wave action flux F based on depth-averaged current U
relative to the exact value, 100(1−F/F) with variation of kh and θ:
Constant shear current, β = 0.

164



Figure D.15: As in Figure D.14: Constant shear current, β = π/4.
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Figure D.16: As in Figure D.14: Constant shear current, β = π/2.

Figure D.17: % error in wave action density 100(1−Ns/N ) based on surface current:
MCR current profile with variation of kz0 and θ.
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Figure D.18: % error in wave action flux 100(1−|Fs|/|F |) based on surface current:
MCR current profile with variation of kz0 and θ.

Figure D.19: % error in wave action density 100(1−N /N ) based on depth-average
current: MCR current profile with variation of kz0 and θ.
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Figure D.20: % error in wave action flux 100(1 − |F |/|F |)based on depth-average
current: MCR current profile with variation of kz0 and θ with, average
current value.

Figure D.21: % error in wave action flux 100(1−|F̃T |/|F |) for current with constant
shear, with variation of k∗ and θ, with k∗ = k/kp, kph = 1: Taylor series
expansion of σ̃(k) and Û(k) around kp, β = 0.
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Figure D.22: % error in wave action flux 100(1−|F̃T |/|F |) for current with constant
shear, with variation of k∗ and θ, with k∗ = k/kp, kph = 2: Taylor series
expansion of σ̃(k) and Û(k) around kp, β = 0.
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Figure D.23: % error in wave action flux 100(1−|F̃T |/|F |) for current with constant
shear, with variation of k∗ and θ, with k∗ = k/kp, kph = 3: Taylor series
expansion of σ̃(k) and Û(k) around kp, β = 0.
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Figure D.24: % error in wave action flux 100(1 − |F̃T |/|F |): MCR current profile
with variation of k∗ and θ with k∗ = k/kp and kph = 1, first order
perturbation approximation.

Figure D.25: % error in wave action flux 100(1 − |F̃T |/|F |): MCR current profile
with variation of k∗ and θ with k∗ = k/kp and kph = 2, first order
perturbation approximation.
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Appendix E

PERMISSIONS

Chapters 3 and 4 have been published in Ocean Modelling. Rights and content

to include these publications in the thesis has been provided in this appendix.
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